Advertisement

Tumor Ablation Enhancement by Combining Radiofrequency Ablation and Irreversible Electroporation: An In Vitro 3D Tumor Study

  • Bing ZhangEmail author
  • Yongji Yang
  • Lujia Ding
  • Michael A. J. Moser
  • Edwin M. Zhang
  • Wenjun Zhang
Article
  • 59 Downloads

Abstract

We hypothesized and demonstrated for the first time that significant tumor ablation enhancement can be achieved by combining radiofrequency ablation (RFA) and irreversible electroporation (IRE) using a 3D cervical cancer cell model. Three RFA (43, 50, and 60 °C for 2 min) and IRE protocols (350, 700, and 1050 V/cm) were used to study the combining effect in the 3D tumor cell model. The in vitro experiment showed that both RFA enhanced IRE and IRE enhanced RFA can lead to a significant increase in the size of the ablation zone compared to IRE and RFA alone. It was also noted that the sequence of applying ablation energy (RFA → RE or IRE → RFA) affected the efficacy of tumor ablation enhancement. The electrical conductivity of 3D tumor was found to be increased after preliminary RFA or IRE treatment. This increase in tumor conductivity may explain the enhancement of tumor ablation. Another explanation might be that there is repeat injury to the transitional zone of the first treatment by the second one. The promising results achieved in the study can provide us useful clues about the treatment of large tumors abutting large vessels or bile ducts.

Keywords

3D tumor cell model Irreversible electroporation In vitro Radiofrequency ablation Tumor ablation enhancement 

Notes

Acknowledgments

This article was supported by 111 Project (D18003) of China. The first author (BZ) received financial support from National Natural Science Foundation of China (Grant No. 81801795), and the last author (WZ) was supported by National Sciences and Engineering Research Council of Canada through Discovery Grant (Grant No. 417649).

References

  1. 1.
    Ahmed, M., C. L. Brace, F. T. Lee, Jr, and S. N. Goldberg. Principles of and advances in percutaneous ablation. Radiology 258:351–369, 2011.CrossRefGoogle Scholar
  2. 2.
    Alba-Martínez, J., M. Trujillo, R. Blasco-Giménez, and E. Berjano. Could it be advantageous to tune the temperature controller during radiofrequency ablation? A feasibility study using theoretical models. Int. J. Hyperth. 27:539–548, 2011.CrossRefGoogle Scholar
  3. 3.
    Appelbaum, L., E. Ben-David, M. Faroja, Y. Nissenbaum, J. Sosna, and S. N. Goldberg. Irreversible electroporation ablation: creation of large-volume ablation zones in in vivo porcine liver with four-electrode arrays. Radiology 270:416–424, 2014.CrossRefGoogle Scholar
  4. 4.
    Arena, C. B., C. S. Szot, P. A. Garcia, M. N. Rylander, and R. V. Davalos. A three-dimensional in vitro tumor platform for modeling therapeutic irreversible electroporation. Biophys. J. 103:2033–2042, 2012.CrossRefGoogle Scholar
  5. 5.
    Chinn, S. B., F. T. Lee, Jr, G. D. Kennedy, et al. Effect of vascular occlusion on radiofrequency ablation of the liver: results in a porcine model. Am. J. Roentgenol. 176:789–795, 2001.CrossRefGoogle Scholar
  6. 6.
    Chu, K. F., and D. E. Dupuy. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer 14:199–208, 2014.CrossRefGoogle Scholar
  7. 7.
    Clasen, S., D. Schmidt, A. Boss, et al. Multipolar radiofrequency ablation with internally cooled electrodes: experimental study in ex vivo bovine liver with mathematic modeling. Radiology 238:881–890, 2006.CrossRefGoogle Scholar
  8. 8.
    Davalos, R. V., L. Mir, and B. Rubinsky. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33:223–231, 2005.CrossRefGoogle Scholar
  9. 9.
    Edelblute, C. M., J. Hornef, N. I. Burcus, et al. Controllable moderate heating enhances the therapeutic efficacy of irreversible electroporation for pancreatic cancer. Sci. Rep. 7:11767, 2017.CrossRefGoogle Scholar
  10. 10.
    Fang, Z., B. Zhang, M. Moser, E. Zhang, and W. Zhang. Design of a novel electrode of radiofrequency ablation for large tumors: a finite element study. J. Eng. Sci. Med. Diagn. Ther. 1:011001, 2018.CrossRefGoogle Scholar
  11. 11.
    Faroja, M., M. Ahmed, L. Appelbaum, et al. Irreversible electroporation ablation: is all the damage nonthermal? Radiology 266:462–470, 2013.CrossRefGoogle Scholar
  12. 12.
    Goldberg, S. N., M. Ahmed, G. S. Gazelle, et al. Radio-frequency thermal ablation with NaCl solution injection: effect of electrical conductivity on tissue heating and coagulation—phantom and porcine liver study. Radiology 219:157–165, 2001.CrossRefGoogle Scholar
  13. 13.
    Goldberg, S. N., M. C. Stein, G. S. Gazelle, R. G. Sheiman, J. B. Kruskal, and M. E. Clouse. Percutaneous radiofrequency tissue ablation: optimization of pulsed-radiofrequency technique to increase coagulation necrosis. J. Vasc. Interv. Radiol. 10:907–916, 1999.CrossRefGoogle Scholar
  14. 14.
    Haemmerich, D., D. J. Schutt, A. S. Wright, J. G. Webster, and D. M. Mahvi. Electrical conductivity measurement of excised human metastatic liver tumours before and after thermal ablation. Physiol. Meas. 30:459, 2009.CrossRefGoogle Scholar
  15. 15.
    Hendy, M. P., M. H. Recht, and R. E. Welling. Radiofrequency ablation of the porcine liver with complete hepatic vascular occlusion. Ann. Surg. Oncol. 9:594–598, 2002.CrossRefGoogle Scholar
  16. 16.
    Hung, H. H., Y. Y. Chiou, C. Y. Hsia, et al. Survival rates are comparable after radiofrequency ablation or surgery in patients with small hepatocellular carcinomas. Clin. Gastroenterol. Hepatol. 9:79–86, 2011.CrossRefGoogle Scholar
  17. 17.
    Ivey, J. W., E. L. Latouche, M. L. Richards, et al. Enhancing irreversible electroporation by manipulating cellular biophysics with a molecular adjuvant. Biophys. J. 113:472–480, 2017.CrossRefGoogle Scholar
  18. 18.
    Ivorra, A., B. Al-Sakere, B. Rubinsky, and L. M. Mir. In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome. Phys. Med. Biol. 54:5949, 2009.CrossRefGoogle Scholar
  19. 19.
    Jiang, C., R. V. Davalos, and J. C. Bischof. A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans. Biomed. Eng. 62:4–20, 2015.CrossRefGoogle Scholar
  20. 20.
    Jiang, C., Q. Shao, and J. Bischof. Pulse timing during irreversible electroporation achieves enhanced destruction in a hindlimb model of cancer. Ann. Biomed. Eng. 43:887–895, 2015.CrossRefGoogle Scholar
  21. 21.
    Kunjachan, S., A. Detappe, R. Kumar, et al. Nanoparticle mediated tumor vascular disruption: a novel strategy in radiation therapy. Nano Lett. 15:7488–7496, 2015.CrossRefGoogle Scholar
  22. 22.
    Laufer, S., A. Ivorra, V. E. Reuter, B. Rubinsky, and S. B. Solomon. Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiol. Meas. 31:995, 2010.CrossRefGoogle Scholar
  23. 23.
    Lencioni, R., L. Crocetti, D. Cioni, et al. Single-session percutaneous ethanol ablation of early-stage hepatocellular carcinoma with a multipronged injection needle: results of a pilot clinical study. J. Vasc. Interv. Radiol. 21:1533–1538, 2010.CrossRefGoogle Scholar
  24. 24.
    Lu, D. S., S. S. Raman, P. Limanond, et al. Influence of large peritumoral vessels on outcome of radiofrequency ablation of liver tumors. J. Vasc. Interv. Radiol. 14:1267–1274, 2003.CrossRefGoogle Scholar
  25. 25.
    Neal, II, R. E., P. A. Garcia, J. L. Robertson, and R. V. Davalos. Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. IEEE Trans. Biomed. Eng. 59:1076–1085, 2012.CrossRefGoogle Scholar
  26. 26.
    Pech, M., A. Janitzky, J. J. Wendler, et al. Irreversible electroporation of renal cell carcinoma: a first-in-man phase I clinical study. Cardiovasc. Interv. Radiol. 34:132–138, 2011.CrossRefGoogle Scholar
  27. 27.
    Peng, Z.-W., Y.-J. Zhang, M.-S. Chen, et al. Radiofrequency ablation with or without transcatheter arterial chemoembolization in the treatment of hepatocellular carcinoma: a prospective randomized trial. J. Clin. Oncol. 31:426–432, 2013.CrossRefGoogle Scholar
  28. 28.
    Pillai, K., J. Akhter, T. C. Chua, et al. Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model. Medicine 94:9, 2015.CrossRefGoogle Scholar
  29. 29.
    Rossmann, C., M. McCrackin, K. E. Armeson, and D. Haemmerich. Temperature sensitive liposomes combined with thermal ablation: effects of duration and timing of heating in mathematical models and in vivo. PLoS ONE 12:e0179131, 2017.CrossRefGoogle Scholar
  30. 30.
    Sakr, A. A., A. A. Saleh, A. A. A. Moeaty, and A. A. Moeaty. The combined effect of radiofrequency and ethanol ablation in the management of large hepatocellular carcinoma. Eur. J. Radiol. 54:418–425, 2005.CrossRefGoogle Scholar
  31. 31.
    Sano, M. B., R. E. Fan, and L. Xing. Asymmetric waveforms decrease lethal thresholds in high frequency irreversible electroporation therapies. Sci. Rep. 7:40747, 2017.CrossRefGoogle Scholar
  32. 32.
    Shao, Q., F. Liu, C. Chung, et al. Physical and chemical enhancement of and adaptive resistance to irreversible electroporation of pancreatic cancer. Ann. Biomed. Eng. 46:25–36, 2017.CrossRefGoogle Scholar
  33. 33.
    Swenson, C. E., D. Haemmerich, D. H. Maul, B. Knox, N. Ehrhart, and R. A. Reed. Increased duration of heating boosts local drug deposition during radiofrequency ablation in combination with thermally sensitive liposomes (ThermoDox) in a porcine model. PLoS ONE 10:e0139752, 2015.CrossRefGoogle Scholar
  34. 34.
    Takahashi, H., B. Kahramangil, E. Kose, and E. Berber. A comparison of microwave thermosphere versus radiofrequency thermal ablation in the treatment of colorectal liver metastases. HPB 20:1157–1162, 2018.CrossRefGoogle Scholar
  35. 35.
    Takaki, H., A. Nakatsuka, J. Uraki, et al. Renal cell carcinoma: radiofrequency ablation with a multiple-electrode switching system—a phase II clinical study. Radiology 267:285–292, 2013.CrossRefGoogle Scholar
  36. 36.
    Trujillo, M., Q. Castellví, F. Burdío, et al. Can electroporation previous to radiofrequency hepatic ablation enlarge thermal lesion size? A feasibility study based on theoretical modelling and in vivo experiments. Int. J. Hyperth. 29:211–218, 2013.CrossRefGoogle Scholar
  37. 37.
    Watanabe, S., K. Kurokohchi, T. Masaki, et al. Enlargement of thermal ablation zone by the combination of ethanol injection and radiofrequency ablation in excised bovine liver. Int. J. Oncol. 24:279–284, 2004.Google Scholar
  38. 38.
    Wendler, J., M. Porsch, S. Nitschke, et al. A prospective Phase 2a pilot study investigating focal percutaneous irreversible electroporation (IRE) ablation by NanoKnife in patients with localised renal cell carcinoma (RCC) with delayed interval tumour resection (IRENE trial). Contemp. Clin. Trials 43:10–19, 2015.CrossRefGoogle Scholar
  39. 39.
    Wright, A. S., L. A. Sampson, T. F. Warner, D. M. Mahvi, J. Lee, and T. Fred. Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology 236:132–139, 2005.CrossRefGoogle Scholar
  40. 40.
    Yang, Y., M. A. Moser, E. Zhang, W. Zhang, and B. Zhang. Development of a statistical model for cervical cancer cell death with irreversible electroporation in vitro. PLoS ONE 13:e0195561, 2018.CrossRefGoogle Scholar
  41. 41.
    Yao, C., Y. Lv, Y. Zhao, S. Dong, H. Liu, and J. Ma. Synergistic combinations of short high-voltage pulses and long low-voltage pulses enhance irreversible electroporation efficacy. Sci. Rep. 7:15123, 2017.CrossRefGoogle Scholar
  42. 42.
    Zhang, B., M. A. Moser, E. M. Zhang, Y. Luo, C. Liu, and W. Zhang. A review of radiofrequency ablation: large target tissue necrosis and mathematical modelling. Phys. Med. 32:961–971, 2016.CrossRefGoogle Scholar
  43. 43.
    Zhang, B., M. A. Moser, E. M. Zhang, Y. Luo, and W. Zhang. A new approach to feedback control of radiofrequency ablation systems for large coagulation zones. Int. J. Hyperth. 33:367–377, 2017.CrossRefGoogle Scholar
  44. 44.
    Zhao, Y., S. Bhonsle, S. Dong, et al. Characterization of conductivity changes during high-frequency irreversible electroporation for treatment planning. IEEE Trans. Biomed. Eng. 2017.  https://doi.org/10.1109/TBME.2017.2787038.Google Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Tumor Ablation Group, Biomedical Science and Technology Research Center, School of Mechatronic Engineering and AutomationShanghai UniversityShanghaiChina
  2. 2.School of Mechanical and Power EngineeringEast China University of Science and TechnologyShanghaiChina
  3. 3.Department of SurgeryUniversity of SaskatchewanSaskatoonCanada
  4. 4.Division of Vascular & Interventional Radiology, Department of Medical ImagingUniversity of TorontoTorontoCanada
  5. 5.Department of Mechanical EngineeringUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations