Advertisement

Effect of Tissue Material Properties in Blast Loading: Coupled Experimentation and Finite Element Simulation

  • Molly T. Townsend
  • Eren Alay
  • Maciej Skotak
  • Namas Chandra
State-of-the-Art Modeling and Simulation of the Brain's Response to Mechanical Loads
  • 19 Downloads

Abstract

Computational models of blast-induced traumatic brain injury (bTBI) require a robust definition of the material models of the brain. The mechanical constitutive models of these tissues are difficult to characterize, leading to a wide range of values reported in literature. Therefore, the sensitivity of the intracranial pressure (ICP) and maximum principal strain to variations in the material model of the brain was investigated through a combined computational and experimental approach. A finite element model of a rat was created to simulate a shock wave exposure, guided by the experimental measurements of rats subjected to shock loading conditions corresponding to that of mild traumatic brain injury in a field-validated shock tube. In the numerical model, the properties of the brain were parametrically varied. A comparison of the ICP measured at two locations revealed that experimental and simulated ICP were higher in the cerebellum (p < 0.0001), highlighting the significance of pressure sensor locations within the cranium. The ICP and strain were correlated with the long-term bulk (p < 0.0001) and shear moduli (p < 0.0001), with an 80 MPa effective bulk modulus value matching best with experimental measurements. In bTBI, the solution is sensitive to the brain material model, necessitating robust validation methods.

Keywords

Shock wave Intracranial pressure Brain properties 

Notes

Acknowledgments

This work was supported by Grant No. 14059001 (W81XWH-15-1-0303) under the U.S. Army Medical Research and Materiel Command. Authors acknowledge the assistance of Dr. Saikat Pal with proof reading, Debrina Roy in model development, and Dr. Raj Gupta in theoretical discussions.

Conflict of interest

The authors have no conflicts to disclose.

Supplementary material

10439_2018_2178_MOESM1_ESM.tif (157 kb)
Figure S1 The experimental incident pressure measurements (mean ± one standard deviation, n=4) were compared to the simulated incident pressure measurement at the location at which the Lagrangian part instance was placed (TIFF 157 kb)

References

  1. 1.
    Baumgartner, D., M. Lamy, R. Willinger, P. Choquet, C. Goetz, A. Constantinesco, and J. Davidsson. Finite element analysis of traumatic brain injuries mechanisms in the rat. In: IRCOBI Conference, 2009, pp. 97–108.Google Scholar
  2. 2.
    Bilston, L. E., Z. Liu, and N. Phan-Thien. Linear viscoelastic properties of bovine brain tissue in shear. Biorheology 34(6):377–385, 1997.  https://doi.org/10.1016/S0006-355X(98)00022-5.CrossRefGoogle Scholar
  3. 3.
    Cernak, I., Z. Wang, J. Jiang, X. Bian, and J. Savic. Ultrastructural and functional characteristics of blast injury-induced neurotrauma. J. Trauma 50:695–706, 2001.CrossRefGoogle Scholar
  4. 4.
    Chafi, M. S., G. Karami, and M. Ziejewski. Biomechanical assessment of brain dynamic responses due to blast pressure waves. Ann. Biomed. Eng. 38(2):490–504, 2010.  https://doi.org/10.1007/s10439-009-9813-z.CrossRefGoogle Scholar
  5. 5.
    Chandra, N., S. Ganpule, N. N. Kleinschmit, R. Feng, A. D. Holmberg, A. Sundaramurthy, V. Selvan, and A. Alai. Evolution of blast wave profiles in simulated air blasts: experiment and computational modeling. Shock Waves 22(5):403–415, 2012.  https://doi.org/10.1007/s00193-012-0399-2.CrossRefGoogle Scholar
  6. 6.
    Chandra, N., A. Sundaramurthy, and R. K. Gupta. Validation of laboratory animal and surrogate human models in primary blast injury studies. Mil. Med. 182:105–113, 2017.  https://doi.org/10.7205/MILMED-D-16-00144.CrossRefGoogle Scholar
  7. 7.
    Chatelin, S., C. Deck, and R. Willinger. An anisotropic viscous hyperelastic constitutive law for brain material finite-element modeling. J. Biorheol. 27:26–37, 2013.  https://doi.org/10.1007/s12573-012-0055-6.CrossRefGoogle Scholar
  8. 8.
    Clemedson, C. J. Shock wave transmission to the central nervous system. Acta Physiol. Scand. 37(2–3):204–214, 1956.  https://doi.org/10.1111/j.1748-1716.1956.tb01356.x.CrossRefGoogle Scholar
  9. 9.
    de Rooij, R., and E. Kuhl. Constitutive modeling of brain tissue: current perspectives. Appl. Mech. Rev. 68(1):010801–010801-16, 2016.  https://doi.org/10.1115/1.4032436.CrossRefGoogle Scholar
  10. 10.
    Defense and Veterans Brain Injury Center. DoD Numbers for Traumatic Brain Injury. Silver Spring: Defense and Veterans Brain Injury Center, pp. 1–5, 2013.Google Scholar
  11. 11.
    Elkin, B. S., A. I. Ilankovan, and B. Morrison. Age-dependent regional mechanical properties of the rat hippocampus and cortex. J. Biomech. Eng. 132(1):011010, 2009.  https://doi.org/10.1115/1.4000164.CrossRefGoogle Scholar
  12. 12.
    Fallenstein, G., V. Hulce, and J. Melvin. Dynamic mechanical properties of human brain tissue. J. Biomech. 2(3):217–226, 1969.  https://doi.org/10.1016/0021-9290(69)90079-7.CrossRefGoogle Scholar
  13. 13.
    Finan, J. D., B. S. Elkin, E. M. Pearson, I. L. Kalbian, and B. Morrison. Viscoelastic properties of the rat brain in the sagittal plane: effects of anatomical structure and age. Ann. Biomed. Eng. 40(1):70–78, 2012.  https://doi.org/10.1007/s10439-011-0394-2.CrossRefGoogle Scholar
  14. 14.
    Finan, J. D., S. N. Sundaresh, B. S. Elkin, G. M. McKhann, and B. Morrison. Regional mechanical properties of human brain tissue for computational models of traumatic brain injury. Acta Biomater. 55:333–339, 2017.  https://doi.org/10.1016/j.actbio.2017.03.037.CrossRefGoogle Scholar
  15. 15.
    Gadd, C. W., A. M. Nahum, D. C. Schneider, and R. G. Madeira. Tolerance and properties of superficial soft tissues in situ. SAE Techn. Pap. 1970.  https://doi.org/10.4271/700910.Google Scholar
  16. 16.
    Galford, J. E., and J. H. McElhaney. A viscoelastic study of scalp, brain, and dura. J. Biomech. 3(2):211–221, 1970.  https://doi.org/10.1016/0021-9290(70)90007-2.CrossRefGoogle Scholar
  17. 17.
    Ganpule, S., N. P. Daphalapurkar, M. P. Cetingul, and K. T. Ramesh. Effect of bulk modulus on deformation of the brain under rotational accelerations. Shock Waves 28(1):127–139, 2018.  https://doi.org/10.1007/s00193-017-0791-z.CrossRefGoogle Scholar
  18. 18.
    Gefen, A., N. Gefen, Q. Zhu, R. Raghupathi, and S. S. Margulies. Age-dependent changes in material properties of the brain and braincase of the rat. J. Neurotrauma 20(11):1163–1177, 2003.  https://doi.org/10.1089/089771503770802853.CrossRefGoogle Scholar
  19. 19.
    Grujicic, M., W. C. Bell, B. Pandurangan, and P. S. Glomski. Fluid/structure interaction computational investigation of blast-wave mitigation efficacy of the advanced combat helmet. J. Mater. Eng. Perform. 20(6):877–893, 2011.  https://doi.org/10.1007/s11665-010-9724-z.CrossRefGoogle Scholar
  20. 20.
    Gupta, R. K., X. G. Tan, M. R. Somayaji, and A. J. Przekwas. Multiscale modelling of blast-induced TBI mechanobiology—from body to neuron to molecule. Def. Life Sci. J. 2(1):3–13, 2017.  https://doi.org/10.14429/dlsj.2.10369.CrossRefGoogle Scholar
  21. 21.
    Hua, Y., P. Akula, M. Kelso, and L. Gu. Characterization of closed head impact injury in rat. Biomed Res. Int. 2015.  https://doi.org/10.1155/2015/272976.Google Scholar
  22. 22.
    Jean, A., M. K. Nyein, J. Q. Zheng, D. F. Moore, J. D. Joannopoulos, and R. Radovitzky. An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment. Proc. Natl. Acad. Sci. 111(43):15310–15315, 2014.  https://doi.org/10.1073/pnas.1415743111.CrossRefGoogle Scholar
  23. 23.
    Knutsen, A. K., E. Magrath, J. E. McEntee, F. Xing, J. L. Prince, P. V. Bayly, J. A. Butman, and D. L. Pham. Improved measurement of brain deformation during mild head acceleration using a novel tagged MRI sequence. J. Biomech. 47(14):3475–3481, 2014.  https://doi.org/10.1016/j.jbiomech.2014.09.010.CrossRefGoogle Scholar
  24. 24.
    Kuriakose, M., M. Skotak, A. Misistia, S. Kahali, A. Sundaramurthy, and N. Chandra. Tailoring the blast exposure conditions in the shock tube for generating pure, primary shock waves: the end plate facilitates elimination of secondary loading of the specimen. PLoS ONE 11(9):e0161597, 2016.  https://doi.org/10.1371/journal.pone.0161597.CrossRefGoogle Scholar
  25. 25.
    Mao, H., G. Unnikrishnan, V. Rakesh, and J. Reifman. Untangling the effect of head acceleration on brain responses to blast waves. J. Biomech. Eng. 137(12):124502, 2015.  https://doi.org/10.1115/1.4031765.CrossRefGoogle Scholar
  26. 26.
    Moore, D. F., A. Jérusalem, M. Nyein, L. Noels, M. S. Jaffee, and R. A. Radovitzky. Computational biology—modeling of primary blast effects on the central nervous system. Neuroimage 47:T10–T20, 2009.  https://doi.org/10.1016/j.neuroimage.2009.02.019.CrossRefGoogle Scholar
  27. 27.
    Moss, W. C., M. J. King, and E. G. Blackman. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design. Phys. Rev. Lett. 103(10):4–7, 2009.  https://doi.org/10.1103/PhysRevLett.103.108702.CrossRefGoogle Scholar
  28. 28.
    Nyein, M. K., A. M. Jason, L. Yu, C. M. Pita, J. D. Joannopoulos, D. F. Moore, and R. A. Radovitzky. In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury. Proc. Natl. Acad. Sci. 107(48):20703–20708, 2010.  https://doi.org/10.1073/pnas.1014786107.CrossRefGoogle Scholar
  29. 29.
    Prange, M. T., D. F. Meaney, and S. S. Margulies. Defining brain mechanical properties: effects of region, direction, and species. Stapp Car Crash J. 44:205–213, 2000.Google Scholar
  30. 30.
    Przekwas, A., V. C. Chancey, X. G. Tan, Z. J. Chen, P. Wilkerson, A. Zhou, V. Harrand, C. Imielinska, and D. Reeves. Development of physics-based model and experimental validation of helmet performance in blast wave TBI. In: ASME 2009 Summer Bioengineering Conference (2009).  https://doi.org/10.1115/sbc2009-206839.
  31. 31.
    Qian, L., H. Zhao, Y. Guo, Y. Li, M. Zhou, L. Yang, Z. Wang, and Y. Sun. Influence of strain rate on indentation response of porcine brain. J. Mech. Behav. Biomed. Mater. 82:210–217, 2018.  https://doi.org/10.1016/j.jmbbm.2018.03.031.CrossRefGoogle Scholar
  32. 32.
    Rodríguez-Millán, M., L. B. Tan, K. M. Tse, H. P. Lee, and M. H. Miguélez. Effect of full helmet systems on human head responses under blast loading. Mater. Des. 117:58–71, 2017.  https://doi.org/10.1016/j.matdes.2016.12.081.CrossRefGoogle Scholar
  33. 33.
    Ruan, J. S., T. Khalil, and A. I. King. Human head dynamic response to side impact by finite element modeling. J. Biomech. Eng. 113(3):276–283, 1991.  https://doi.org/10.1115/1.2894885.CrossRefGoogle Scholar
  34. 34.
    Sarvghad-Moghaddam, H., A. Rezaei, M. Ziejewski, and G. Karami. CFD modeling of the underwash effect of military helmets as a possible mechanism for blast-induced traumatic brain injury. Comput. Methods Biomech. Biomed. Eng. 20:16–26, 2016.  https://doi.org/10.1080/10255842.2016.1193597.CrossRefGoogle Scholar
  35. 35.
    Singh, D., and D. S. Cronin. Efficacy of visor and helmet for blast protection assessed using a computational head model. Shock Waves 27:905–918, 2017.  https://doi.org/10.1007/s00193-017-0732-x.CrossRefGoogle Scholar
  36. 36.
    Stalnaker, R. L. Mechanical Properties of the Head. Morgantown: West Virginia University, pp. 1–131, 1969.Google Scholar
  37. 37.
    Sundaramurthy, A., A. Alai, S. Ganpule, A. Holmberg, E. Plougonven, and N. Chandra. Blast-induced biomechanical loading of the rat: an experimental and anatomically accurate computational blast injury model. J. Neurotrauma 29(13):2352–2364, 2012.  https://doi.org/10.1089/neu.2012.2413.CrossRefGoogle Scholar
  38. 38.
    Tan, X. G., A. J. Przekwas, and R. K. Gupta. Computational modeling of blast wave interaction with a human body and assessment of traumatic brain injury. Shock Waves 27:889–904, 2017.  https://doi.org/10.1007/s00193-017-0740-x.CrossRefGoogle Scholar
  39. 39.
    Taylor, P. A., and C. C. Ford. Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury. J. Biomech. Eng. 131:061007, 2009.  https://doi.org/10.1115/1.3118765.CrossRefGoogle Scholar
  40. 40.
    Vappou, J., E. Breton, P. Choquet, R. Willinger, and A. Constantinesco. Assessment of in vivo and post-mortem mechanical behavior of brain tissue using magnetic resonance elastography. J. Biomech. 41(14):2954–2959, 2008.  https://doi.org/10.1016/j.jbiomech.2008.07.034.CrossRefGoogle Scholar
  41. 41.
    Ward, J. W., L. H. Montgomery, and S. L. Clark. A mechanism of concussion: a theory. Science 107:349–353, 1948.  https://doi.org/10.1126/science.107.2779.349.CrossRefGoogle Scholar
  42. 42.
    Zhang, L., R. Makwana, and S. Sharma. Brain response to primary blast wave using validated finite element models of human head and advanced combat helmet. Front. Neurol. 4:1–12, 2013.  https://doi.org/10.3389/fneur.2013.00088.CrossRefGoogle Scholar
  43. 43.
    Zhang, J., N. Yoganandan, F. A. Pintar, T. A. Gennarelli, and B. S. Shender. A finite element study of blast traumatic brain injury. Biomed. Sci. Instrum. 45:119–124, 2009.Google Scholar
  44. 44.
    Zhu, F., A. Kalra, T. Saif, Z. Yang, K. H. Yang, and A. I. King. Parametric analysis of the biomechanical response of head subjected to the primary blast loading—a data mining approach. Comput. Methods Biomech. Biomed. Engin. 19(10):1053–1059, 2015.  https://doi.org/10.1080/10255842.2015.1091887.CrossRefGoogle Scholar
  45. 45.
    Zhu, F., H. Mao, A. Dal Cengio Leonardi, C. Wagner, C. Chou, X. Jin, C. Bir, P. Vandevord, K. H. Yang, and A. I. King. Development of an FE model of the rat head subjected to air shock loading. Stapp Car Crash J. 54:211–225, 2010.Google Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Molly T. Townsend
    • 1
  • Eren Alay
    • 1
  • Maciej Skotak
    • 1
  • Namas Chandra
    • 1
  1. 1.Biomedical Engineering DepartmentNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations