Annals of Biomedical Engineering

, Volume 47, Issue 3, pp 731–743 | Cite as

Quantification of Cerebellar Crowding in Type I Chiari Malformation

  • Dipankar BiswasEmail author
  • Maggie S. Eppelheimer
  • James R. Houston
  • Alaaddin Ibrahimy
  • J. Rajiv Bapuraj
  • Richard Labuda
  • Philip A. Allen
  • David Frim
  • Francis Loth


This study was focused on a semi-automated morphometric analysis of the cerebellum in the mid-sagittal plane as an alternative to tonsillar descent alone in the evaluation of Chiari malformation type 1 (CMI) patients. Morphometric analyses of posterior fossa structures were performed on mid-sagittal MRI images of 375 individuals (females, > 18 years, 235 CMI and 140 healthy controls). Twenty-six parameters including linear, angular and area measurements together with non-dimensional ratios were calculated. Eighteen parameters were found to be significantly different between CMI and control subjects. Smaller posterior cranial fossa (PCF) area in CMI subjects was attributed to a smaller PCF area anterior to the brainstem. The cerebellar area was found to be larger in CMI subjects as compared to controls (15.1%), even without inclusion of the tonsillar area below the foramen magnum (FM) (8.4%). The larger cerebellar area in CMI subjects was due to cranial–caudal elongation of the cerebellum, predominately below the fastigium. The cerebrospinal fluid spaces below the FM were smaller in CMI subjects as compared to controls. Overall, greater cerebellar crowding was identified in CMI subjects relative to healthy controls. These observations may improve our understanding of the pathophysiology of CMI in adult female patients.


Morphology MRI Posterior cranial fossa Tonsillar position Cerebrospinal fluid 



The authors would like to acknowledge the contributions of Natalie Allen and Audrey Braun in the initial evaluation of the software. The authors would also like to acknowledge Phillip Vorster and Lauren Elicker for their help with consistency testing of CerePro2D. Funding was provided by Conquer Chiari.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Allen, P.A., D. Delahanty, K.P. Kaut, X. Li, M. Garcia, J.R. Houston, D.M. Tokar, F. Loth, J. Maleki, S. Vorster, and M.G. Luciano. Chiari 1000 registry project: assessment of surgical outcome on self-focused attention, pain, and delayed recall. Psychol Med. 1–11, 2017.Google Scholar
  2. 2.
    Allen, P. A., J. R. Houston, J. W. Pollock, C. Buzzelli, X. Li, A. K. Harrington, B. A. Martin, F. Loth, M. C. Lien, J. Maleki, and M. G. Luciano. Task-specific and general cognitive effects in Chiari malformation type I. PLoS ONE. 9(4):e94844, 2014.Google Scholar
  3. 3.
    Alperin, N., J.R. Loftus, C.J. Oliu, A.M. Bagci, S.H. Lee, B. Ertl-Wagner, B. Green, and R. Sekula. Magnetic resonance imaging measures of posterior cranial fossa morphology and cerebrospinal fluid physiology in Chiari malformation type I. Neurosurgery. 75(5):515–522; discussion 522, 2014.Google Scholar
  4. 4.
    Aydin, S., H. Hanimoglu, T. Tanriverdi, E. Yentur, and M.Y. Kaynar. Chiari type I malformations in adults: a morphometric analysis of the posterior cranial fossa. Surg Neurol. 64(3):237–241; discussion 241, 2005.Google Scholar
  5. 5.
    Badie, B., D. Mendoza, and U. Batzdorf. Posterior-fossa volume and response to suboccipital decompression in patients with Chiari-I malformation. Neurosurgery. 37(2):214–218, 1995.Google Scholar
  6. 6.
    Bagci, A. M., S. H. Lee, N. Nagornaya, B. A. Green, and N. Alperin. Automated posterior cranial fossa volumetry by MRI: applications to Chiari malformation type I. AJNR Am. J. Neuroradiol. 34(9):1758–1763, 2013.Google Scholar
  7. 7.
    Barkovich, A. J., F. J. Wippold, J. L. Sherman, and C. M. Citrin. Significance of cerebellar tonsillar position on MR. AJNR Am J Neuroradiol. 7(5):795–799, 1986.Google Scholar
  8. 8.
    Boyles, A. L., D. S. Enterline, P. H. Hammock, D. G. Siegel, S. H. Slifer, L. Mehltretter, J. R. Gilbert, D. Hu-Lince, D. Stephan, U. Batzdorf, E. Benzel, R. Ellenbogen, B. A. Green, R. Kula, A. Menezes, D. Mueller, J. J. Oro, B. J. Iskandar, T. M. George, T. H. Milhorat, and M. C. Speer. Phenotypic definition of Chiari type I malformation coupled with high-density SNP genome screen shows significant evidence for linkage to regions on chromosomes 9 and 15. Am. J. Med. Genet. A. 140(24):2776–2785, 2006.Google Scholar
  9. 9.
    Chan, T. F., and L. A. Vese. Active contours without edges. IEEE Trans. Image Process. 10(2):266–277, 2001.Google Scholar
  10. 10.
    Dagtekin, A., E. Avci, E. Kara, D. Uzmansel, O. Dagtekin, A. Koseoglu, D. Talas, and C. Bagdatoglu. Posterior cranial fossa morphometry in symptomatic adult Chiari I malformation patients: comparative clinical and anatomical study. Clin Neurol Neurosurg. 113(5):399–403, 2011.Google Scholar
  11. 11.
    Dehghani, C., N. Pritchard, K. Edwards, A. W. Russell, R. A. Malik, and N. Efron. Fully automated, semiautomated, and manual morphometric analysis of corneal subbasal nerve plexus in individuals with and without diabetes. Cornea. 33(7):696–702, 2014.Google Scholar
  12. 12.
    Douglas, D.H., Peucker, T. K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica 10(2):112–122, 1973.Google Scholar
  13. 13.
    Dufton, J. A., S. Y. Habeeb, M. K. S. Heran, D. J. Mikulis, and O. Islam. Posterior fossa measurements in patients with and without Chiari I malformation. Can. J. Neurol. Sci. 38(3):452–455, 2011.Google Scholar
  14. 14.
    Elam, M. J., and J. A. Vaughn. Chiari Type I malformations in young adults: implications for the college health practitioner. J. Am. Coll. Health. 59(8):757–759, 2011.Google Scholar
  15. 15.
    Eppelheimer, M.S., J.R. Houston, J.R. Bapuraj, R. Labuda, D.M. Loth, A.M. Braun, N.J. Allen, S.H. Pahlavian, D. Biswas, A. Urbizu, B.A. Martin, C.O. Maher, P.A. Allen, and F. Loth. A retrospective 2D morphometric analysis of adult female Chiari Type I patients with commonly reported and related conditions. Front Neuroanat. 12, 2018.Google Scholar
  16. 16.
    Fischbein, R., J. R. Saling, P. Marty, D. Kropp, J. Meeker, J. Amerine, and M. R. Chyatte. Patient-reported Chiari malformation type I symptoms and diagnostic experiences: a report from the national Conquer Chiari Patient Registry database. Neurol. Sci. 36(9):1617–1624, 2015.Google Scholar
  17. 17.
    Hayakawa, K., Y. Konishi, T. Matsuda, M. Kuriyama, K. Konishi, K. Yamashita, R. Okumura, and D. Hamanaka. Development and aging of brain midline structures: assessment with MR imaging. Radiology. 172(1):171–177, 1989.Google Scholar
  18. 18.
    Heiss, J. D., N. Patronas, H. L. DeVroom, T. Shawker, R. Ennis, W. Kammerer, A. Eidsath, T. Talbot, J. Morris, E. Eskioglu, and E. H. Oldfield. Elucidating the pathophysiology of syringomyelia. J. Neurosurg. 91(4):553–562, 1999.Google Scholar
  19. 19.
    Hoogendam, Y. Y., J. N. van der Geest, F. van der Lijn, A. van der Lugt, W. J. Niessen, G. P. Krestin, A. Hofman, M. W. Vernooij, M. M. Breteler, and M. A. Ikram. Determinants of cerebellar and cerebral volume in the general elderly population. Neurobiol. Aging. 33(12):2774–2781, 2012.Google Scholar
  20. 20.
    Houston, J.R., M.S. Eppelheimer, S.H. Pahlavian, D. Biswas, A. Urbizu, B.A. Martin, J.R. Bapuraj, M. Luciano, P.A. Allen, and F. Loth. A morphometric assessment of type I Chiari malformation above the McRae line: A retrospective case-control study in 302 adult female subjects. J. Neuroradiol. 2017.Google Scholar
  21. 21.
    Houston, J.R., M.L. Hughes, M.C. Lien, B.A. Martin, F. Loth, M.G. Luciano, S. Vorster, and P.A. Allen. An electrophysiological study of cognitive and emotion processing in Type I Chiari malformation. Cerebellum. 2018.Google Scholar
  22. 22.
    Hwang, H. S., J. G. Moon, C. H. Kim, S. M. Oh, J. H. Song, and J. H. Jeong. The comparative morphometric study of the posterior cranial fossa : what is effective approaches to the treatment of Chiari malformation type 1? J. Korean Neurosurg. Soc. 54(5):405–410, 2013.Google Scholar
  23. 23.
    Jernigan, T. L., S. L. Archibald, C. Fennema-Notestine, A. C. Gamst, J. C. Stout, J. Bonner, and J. R. Hesselink. Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging. 22(4):581–594, 2001.Google Scholar
  24. 24.
    Karagoz, F., N. Izgi, and S. Kapijcijoglu Sencer. Morphometric measurements of the cranium in patients with Chiari type I malformation and comparison with the normal population. Acta Neurochir (Wien). 144(2):165–171; discussion 171, 2002.Google Scholar
  25. 25.
    Krishna, V., F. Sammartino, P. Yee, D. Mikulis, M. Walker, G. Elias, and M. Hodaie. Diffusion tensor imaging assessment of microstructural brainstem integrity in Chiari malformation Type I. J. Neurosurg. 125(5):1112–1119, 2016.Google Scholar
  26. 26.
    Lacy, M., S. E. Ellefson, S. DeDios-Stern, and D. M. Frim. Parent-reported executive dysfunction in children and adolescents with Chiari malformation type 1. Pediatr. Neurosurg. 51(5):236–243, 2016.Google Scholar
  27. 27.
    Lirng, J. F., J. L. Fuh, Y. Y. Chen, and S. J. Wang. Posterior cranial fossa crowdedness is related to age and sex: an magnetic resonance volumetric study. Acta Radiol. 46(7):737–742, 2005.Google Scholar
  28. 28.
    Luft, A. R., M. Skalej, J. B. Schulz, D. Welte, R. Kolb, K. Burk, T. Klockgether, and K. Voight. Patterns of age-related shrinkage in cerebellum and brainstem observed in vivo using three-dimensional MRI volumetry. Cereb. Cortex. 9(7):712–721, 1999.Google Scholar
  29. 29.
    Marin-Padilla, M., and T. M. Marin-Padilla. Morphogenesis of experimentally induced Arnold-Chiari malformation. J. Neurol. Sci. 50(1):29–55, 1981.Google Scholar
  30. 30.
    Meadows, J., M. Kraut, M. Guarnieri, R. I. Haroun, and B. S. Carson. Asymptomatic Chiari Type I malformations identified on magnetic resonance imaging. J. Neurosurg. 92(6):920–926, 2000.Google Scholar
  31. 31.
    Milhorat, T. H., M. W. Chou, E. M. Trinidad, R. W. Kula, M. Mandell, C. Wolpert, and M. C. Speer. Chiari I malformation redefined: clinical and radiographic findings for 364 symptomatic patients. Neurosurgery. 44(5):1005–1017, 1999.Google Scholar
  32. 32.
    Milhorat, T. H., M. Nishikawa, R. W. Kula, and Y. D. Dlugacz. Mechanisms of cerebellar tonsil herniation in patients with Chiari malformations as guide to clinical management. Acta Neurochir (Wien). 152(7):1117–1127, 2010.Google Scholar
  33. 33.
    Nishikawa, M., H. Sakamoto, A. Hakuba, N. Nakanishi, and Y. Inoue. Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa. J. Neurosurg. 86(1):40–47, 1997.Google Scholar
  34. 34.
    Noudel, R., N. Jovenin, C. Eap, B. Scherpereel, L. Pierot, and P. Rousseaux. Incidence of basioccipital hypoplasia in Chiari malformation type I: comparative morphometric study of the posterior cranial fossa. Clinical article. J. Neurosurg. 111(5):1046–1052, 2009.Google Scholar
  35. 35.
    Oldfield, E.H. Cerebellar tonsils and syringomyelia. J. Neurosurg. 97(5):1009–1010; discussion 1010, 2002.Google Scholar
  36. 36.
    Oldfield, E.H., K. Muraszko, T.H. Shawker, and N.J. Patronas. Pathophysiology of syringomyelia associated with Chiari I malformation of the cerebellar tonsils. Implications for diagnosis and treatment. J. Neurosurg. 80(1):3–15, 1994.Google Scholar
  37. 37.
    Ramer, U. An iterative procedure for the polygonal approximation of plane curves. Comput. Graph. Image Process. 1(3):244–256, 1972.Google Scholar
  38. 38.
    Rogers, J.M., G. Savage, and M.A. Stoodley. A Systematic review of cognition in Chiari I malformation. Neuropsychol. Rev. 2018.Google Scholar
  39. 39.
    Roller, L. A., B. B. Bruce, and A. M. Saindane. Demographic confounders in volumetric MRI analysis: is the posterior fossa really small in the adult Chiari 1 malformation? AJR Am J Roentgenol. 204(4):835–841, 2015.Google Scholar
  40. 40.
    Sekula, R.F., Jr., P.J. Jannetta, K.F. Casey, E.M. Marchan, L.K. Sekula, and C.S. McCrady. Dimensions of the posterior fossa in patients symptomatic for Chiari I malformation but without cerebellar tonsillar descent. Cereb. Fluid Res. 2:11, 2005.Google Scholar
  41. 41.
    Sgouros, S., M. Kountouri, and K. Natarajan. Posterior fossa volume in children with Chiari malformation Type I. J. Neurosurg. 105(2 Suppl):101–106, 2006.Google Scholar
  42. 42.
    Shaffer, N., B. A. Martin, B. Rocque, C. Madura, O. Wieben, B. J. Iskandar, S. Dombrowski, M. Luciano, J. N. Oshinski, and F. Loth. Cerebrospinal fluid flow impedance is elevated in Type I Chiari malformation. J. Biomech. Eng. 136(2):021012, 2014.Google Scholar
  43. 43.
    Shah, S. A., P. M. Doraiswamy, M. M. Husain, G. S. Figiel, O. B. Boyko, W. M. McDonald, E. H. Ellinwood, Jr, and K. R. Krishnan. Assessment of posterior fossa structures with midsagittal MRI: the effects of age. Neurobiol. Aging. 12(4):371–374, 1991.Google Scholar
  44. 44.
    Tastemur, Y., V. Sabanciogullari, I. Salk, M. Sonmez, and M. Cimen. The Relationship of the posterior cranial fossa, the cerebrum, and cerebellum morphometry with Tonsiller Herniation. Iran. J. Radiol. 14(1), 2017.Google Scholar
  45. 45.
    Urbizu, A., A. Ferré, M. A. Poca, A. Rovira, J. Sahuquillo, B. A. Martin, and A. Macaya. Cephalometric oropharynx and oral cavity analysis in Chiari malformation Type I: a retrospective case-control study. J Neurosurg. 126(2):626–633, 2017.Google Scholar
  46. 46.
    Urbizu, A., M. A. Poca, X. Vidal, A. Rovira, J. Sahuquillo, and A. Macaya. MRI-based morphometric analysis of posterior cranial fossa in the diagnosis of chiari malformation type I. J. Neuroimaging. 24(3):250–256, 2014.Google Scholar
  47. 47.
    Van Essen, D.C., K. Ugurbil, E. Auerbach, D. Barch, T.E. Behrens, R. Bucholz, A. Chang, L. Chen, M. Corbetta, S.W. Curtiss, S. Della Penna, D. Feinberg, M.F. Glasser, N. Harel, A.C. Heath, L. Larson-Prior, D. Marcus, G. Michalareas, S. Moeller, R. Oostenveld, S.E. Petersen, F. Prior, B.L. Schlaggar, S.M. Smith, A.Z. Snyder, J. Xu, E. Yacoub, and W.U.-M.H. Consortium. The Human Connectome Project: a data acquisition perspective. Neuroimage. 62(4):2222–2231, 2012.Google Scholar
  48. 48.
    Vega, A., F. Quintana, and J. Berciano. Basichondrocranium anomalies in adult Chiari type I malformation: a morphometric study. J. Neurol. Sci. 99(2–3):137–145, 1990.Google Scholar
  49. 49.
    Vurdem, U.E., N. Acer, T. Ertekin, A. Savranlar, and M.F. Inci. Analysis of the volumes of the posterior cranial fossa, cerebellum, and herniated tonsils using the stereological methods in patients with Chiari Type I malformation. Sci. World J. 2012.Google Scholar
  50. 50.
    Walhovd, K. B., L. T. Westlye, I. Amlien, T. Espeseth, I. Reinvang, N. Raz, I. Agartz, D. H. Salat, D. N. Greve, B. Fischl, A. M. Dale, and A. M. Fjell. Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiol Aging. 32(5):916–932, 2011.Google Scholar
  51. 51.
    Yan, H., X. Han, M. Jin, Z. Liu, D. Xie, S. Sha, Y. Qiu, and Z. Zhu. Morphometric features of posterior cranial fossa are different between Chiari I malformation with and without syringomyelia. Eur Spine J. 25(7):2202–2209, 2016.Google Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Dipankar Biswas
    • 1
    Email author
  • Maggie S. Eppelheimer
    • 2
  • James R. Houston
    • 3
  • Alaaddin Ibrahimy
    • 1
  • J. Rajiv Bapuraj
    • 4
  • Richard Labuda
    • 5
  • Philip A. Allen
    • 6
  • David Frim
    • 7
  • Francis Loth
    • 1
    • 2
  1. 1.Department of Mechanical EngineeringThe University of AkronAkronUSA
  2. 2.Department of Biomedical EngineeringThe University of AkronAkronUSA
  3. 3.Department of PsychologyMiddle Tennessee State UniversityMurfreesboroUSA
  4. 4.Department of RadiologyUniversity of Michigan Health SystemAnn ArborUSA
  5. 5.Conquer ChiariWexfordUSA
  6. 6.Department of PsychologyThe University of AkronAkronUSA
  7. 7.Department of NeurologyThe University of Chicago MedicineChicagoUSA

Personalised recommendations