Advertisement

Annals of Biomedical Engineering

, Volume 47, Issue 2, pp 366–380 | Cite as

A Review of Integrin-Mediated Endothelial Cell Phenotype in the Design of Cardiovascular Devices

  • Allison Post
  • Ellen Wang
  • Elizabeth Cosgriff-HernandezEmail author
Article

Abstract

Sustained biomaterial thromboresistance has long been a goal and challenge in blood-contacting device design. Endothelialization is one of the most successful strategies to achieve long-term thromboresistance of blood-contacting devices, with the endothelial cell layer providing dynamic hemostatic regulation. It is well established that endothelial cell behavior is influenced by interactions with the underlying extracellular matrix (ECM). Numerous researchers have sought to exploit these interactions to generate improved blood-contacting devices by investigating the expression of hemostatic regulators in endothelial cells on various ECM coatings. The ability to select substrates that promote endothelial cell-mediated thromboresistance is crucial to advancing material design strategies to improve cardiovascular device outcomes. This review provides an overview of endothelial cell regulation of hemostasis, the major components found within the cardiovascular basal lamina, and the interactions of endothelial cells with prominent ECM components of the basement membrane. A summary of ECM-mimetic strategies used in cardiovascular devices is provided with a focus on the effects of key adhesion modalities on endothelial cell regulators of hemostasis.

Keywords

Coagulation Integrin Cardiovascular devices Endothelial cells Hemostatic regulation 

Notes

Acknowledgments

Funding was provided by National Institutes of Health (Grant Nos. R21 EB020978 and R01 EB013297).

References

  1. 1.
    Aeschlimann, D., and M. Paulsson. Cross-linking of laminin-nidogen complexes by tissue transglutaminase. A novel mechanism for basement membrane stabilization. J. Biol. Chem. 266:15308–15317, 1991.PubMedGoogle Scholar
  2. 2.
    Aird, W. C. Endothelial cell heterogeneity. Cold Spring Harb. Perspect. Med. 2:a006429, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Alexopoulou, A. N., H. A. Multhaupt, and J. R. Couchman. Syndecans in wound healing, inflammation and vascular biology. Int. J. Biochem. Cell. Biol. 39:505–528, 2007.CrossRefPubMedGoogle Scholar
  4. 4.
    Bae, J.-S., L. Yang, and A. R. Rezaie. Receptors of the protein C activation and activated protein C signaling pathways are colocalized in lipid rafts of endothelial cells. Proc. Natl. Acad. Sci. USA 104:2867–2872, 2007.CrossRefPubMedGoogle Scholar
  5. 5.
    Bajzar, L., J. Morser, and M. Nesheim. TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombin-thrombomodulin complex. J. Biol. Chem. 271:16603–16608, 1996.CrossRefPubMedGoogle Scholar
  6. 6.
    Balaoing, L. R., A. D. Post, A. Y. Lin, H. Tseng, J. L. Moake, and K. J. Grande-Allen. Laminin peptide-immobilized hydrogels modulate valve endothelial cell hemostatic regulation. PLoS ONE 10:e0130749, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Balcells, M., and E. R. Edelman. Effect of pre-adsorbed proteins on attachment, proliferation, and function of endothelial cells. J. Cell. Physiol. 191:155–161, 2002.CrossRefPubMedGoogle Scholar
  8. 8.
    Bax, D. V., S. E. Bernard, A. Lomas, A. Morgan, J. Humphries, C. A. Shuttleworth, M. J. Humphries, and C. M. Kielty. Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by α5β1 and αvβ3 integrins. J. Biol. Chem. 278:34605–34616, 2003.CrossRefPubMedGoogle Scholar
  9. 9.
    Beauvais, D. M., B. J. Ell, A. R. McWhorter, and A. C. Rapraeger. Syndecan-1 regulates αvβ3 and αvβ5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor. J. Exp. Med. 206:691–705, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bernfield, M., R. Kokenyesi, M. Kato, M. Hinkes, J. Spring, R. Gallo, and E. Lose. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Ann. Rev. Cell Biol. 8:365–393, 1992.CrossRefPubMedGoogle Scholar
  11. 11.
    Bonetti, P. O., L. O. Lerman, and A. Lerman. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler. Thromb. Vasc. Biol. 23:168–175, 2003.CrossRefPubMedGoogle Scholar
  12. 12.
    Booyse, F. M., M. L. Aikens, and H. E. Grenett. Endothelial cell fibrinolysis: transcriptional regulation of fibrinolytic protein gene expression (t-PA, u-PA, and PAI-1) by low alcohol. Alcoholism 23:1119–1124, 1999.PubMedGoogle Scholar
  13. 13.
    Bos, G. W., A. A. Poot, T. Beugeling, W. G. van Aken, and J. Feijen. Small-diameter vascular graft prostheses: current status. Arch. Physiol. Biochem. 106:100–115, 1998.CrossRefPubMedGoogle Scholar
  14. 14.
    Bouïs, D., G. A. Hospers, C. Meijer, G. Molema, and N. H. Mulder. Endothelium in vitro: a review of human vascular endothelial cell lines for blood vessel-related research. Angiogenesis 4:91–102, 2001.CrossRefPubMedGoogle Scholar
  15. 15.
    Broberg, M., and H. Nygren. Von Willebrand factor, a key protein in the exposure of CD62P on platelets. Biomaterials 22:2403–2409, 2001.CrossRefPubMedGoogle Scholar
  16. 16.
    Browning, M. B., V. Guiza, B. Russell, J. Rivera, S. Cereceres, M. Höök, M. S. Hahn, and E. M. Cosgriff-Hernandez. Endothelial cell response to chemical, biological, and physical cues in bioactive hydrogels. Tissue Eng. Part A 20:3130–3141, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Caplan, M. R., and M. M. Shah. Translating biomaterial properties to intracellular signaling. Cell Biochem. Biophys. 54:1–10, 2009.CrossRefPubMedGoogle Scholar
  18. 18.
    Cardin, A. D., and H. Weintraub. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9:21–32, 1989.CrossRefPubMedGoogle Scholar
  19. 19.
    Carey, D. J. Control of growth and differentiation of vascular cells by extracellular matrix proteins. Ann. Rev. Physiol. 53:161–177, 1991.CrossRefGoogle Scholar
  20. 20.
    Carey, D. J. Syndecans: multifunctional cell-surface co-receptors. Biochem. J. 327:1–16, 1997.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chartier, N. T., M. Lainé, S. Gout, G. Pawlak, C. A. Marie, P. Matos, M. R. Block, and M. R. Jacquier-Sarlin. Laminin-5-integrin interaction signals through PI 3-kinase and Rac1b to promote assembly of adherens junctions in HT-29 cells. J. Cell Sci. 119:31–46, 2006.CrossRefPubMedGoogle Scholar
  22. 22.
    Chaterji, S., C. H. Lam, D. S. Ho, D. C. Proske, and A. B. Baker. Syndecan-1 regulates vascular smooth muscle cell phenotype. PLoS ONE 9:e89824, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chi, J.-T., H. Y. Chang, G. Haraldsen, F. L. Jahnsen, O. G. Troyanskaya, D. S. Chang, Z. Wang, S. G. Rockson, M. van de Rijn, D. Botstein, and P. O. Brown. Endothelial cell diversity revealed by global expression profiling. Proc. Natl. Acad. Sci. USA 100:10623–10628, 2003.CrossRefPubMedGoogle Scholar
  24. 24.
    Chung, A. E., L.-J. Dong, C. Wu, and M. E. Durkin. Biological functions of entactin. Kidney Int. 43:13–19, 1993.CrossRefPubMedGoogle Scholar
  25. 25.
    Chung, A., K. A. Yeung, S. Cortes, G. Sandor, D. Judge, H. Dietz, and C. Van Breemen. Endothelial dysfunction and compromised eNOS/Akt signaling in the thoracic aorta during the progression of Marfan syndrome. Br. J. Pharmacol. 150:1075–1083, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cines, D. B., E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, J. S. Pober, T. M. Wick, B. A. Konkle, B. S. Schwartz, E. S. Barnathan, K. R. McCrae, B. A. Hug, A.-M. Schmidt, and D. M. Stern. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91:3527–3561, 1998.PubMedGoogle Scholar
  27. 27.
    Clark, E. A., and J. S. Brugge. Integrins and signal transduction pathways: the road taken. Science 268:233, 1995.CrossRefPubMedGoogle Scholar
  28. 28.
    Clark, P., D. Coles, and M. Peckham. Preferential adhesion to and survival on patterned laminin organizes myogenesisin vitro. Exp. Cell Res. 230:275–283, 1997.CrossRefPubMedGoogle Scholar
  29. 29.
    Clark, R. A., S. Szot, M. A. Williams, and H. M. Kagan. Oxidation of lysine side-chains of elastin by the myeloperoxidase system and by stimulated human neutrophils. Biochem. Biophys. Res. Commun. 135:451–457, 1986.CrossRefPubMedGoogle Scholar
  30. 30.
    Colognato, H., M. MacCarrick, J. Julian, and P. D. Yurchenco. The laminin α2-chain short arm mediates cell adhesion through both the α1β1 and α2β1 integrins. J. Biol. Chem. 272:29330–29336, 1997.CrossRefPubMedGoogle Scholar
  31. 31.
    Cosgriff-Hernandez, E., M. S. Hahn, B. Russell, T. Wilems, D. Munoz-Pinto, M. B. Browning, J. Rivera, and M. Höök. Bioactive hydrogels based on designer collagens. Acta Biomater. 6:3969–3977, 2010.CrossRefPubMedGoogle Scholar
  32. 32.
    Couchman, J. R., L. Chen, and A. Woods. Syndecans and cell adhesion. Int. Rev. Cytol. 207:113–150, 2001.CrossRefPubMedGoogle Scholar
  33. 33.
    Crawford, D. C., A. Chobanian, and P. Brecher. Angiotensin II induces fibronectin expression associated with cardiac fibrosis in the rat. Circul. Res. 74:727–739, 1994.CrossRefGoogle Scholar
  34. 34.
    da Silva, M. L., and D. F. Cutler. von Willebrand factor multimerization and the polarity of secretory pathways in endothelial cells. Blood 128:277–285, 2016.CrossRefGoogle Scholar
  35. 35.
    Davis, G. E. Affinity of integrins for damaged extracellular matrix: αvβ3 binds to denatured collagen type I through RGD sites. Biochem. Biophys. Res. Commun. 182:1025–1031, 1992.CrossRefPubMedGoogle Scholar
  36. 36.
    Davis, G. E., and D. R. Senger. Endothelial extracellular matrix biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circul. Res. 97:1093–1107, 2005.CrossRefGoogle Scholar
  37. 37.
    De Rossi, G., A. R. Evans, E. Kay, A. Woodfin, T. R. McKay, S. Nourshargh, and J. R. Whiteford. Shed syndecan-2 inhibits angiogenesis. J. Cell. Sci. 127:4788–4799, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    De Rossi, G., and J. R. Whiteford. A novel role for syndecan-3 in angiogenesis. F1000Res. 2:270, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Deanfield, J. E., J. P. Halcox, and T. J. Rabelink. Endothelial function and dysfunction testing and clinical relevance. Circulation 115:1285–1295, 2007.CrossRefPubMedGoogle Scholar
  40. 40.
    Durbeej, M. Laminins. Cell Tissue Res. 339:259–268, 2009.CrossRefPubMedGoogle Scholar
  41. 41.
    Erickson, H. P., N. Carrell, and J. McDONAGH. Fibronectin molecule visualized in electron microscopy: a long, thin, flexible strand. J. Cell Biol. 91:673–678, 1981.CrossRefPubMedGoogle Scholar
  42. 42.
    Erickson, A. C., and J. R. Couchman. Still more complexity in mammalian basement membranes. J. Histochem. Cytochem. 48:1291–1306, 2000.CrossRefPubMedGoogle Scholar
  43. 43.
    Esmon, C. T. Protein C anticoagulant pathway and its role in controlling microvascular thrombosis and inflammation. Crit. Care Med. 29:S48–S51, 2001.CrossRefPubMedGoogle Scholar
  44. 44.
    Fears, C. Y., C. L. Gladson, and A. Woods. Syndecan-2 is expressed in the microvasculature of gliomas and regulates angiogenic processes in microvascular endothelial cells. J. Biol. Chem. 281:14533–14536, 2006.CrossRefPubMedGoogle Scholar
  45. 45.
    Feys, H., P. Anderson, K. Vanhoorelbeke, E. Majerus, and J. Sadler. Multi-step binding of ADAMTS-13 to von Willebrand factor. J. Thromb. Haemost. 7:2088–2095, 2009.CrossRefPubMedGoogle Scholar
  46. 46.
    Fuentealba, L., D. J. Carey, and E. Brandan. Antisense inhibition of syndecan-3 expression during skeletal muscle differentiation accelerates myogenesis through a basic fibroblast growth factor-dependent mechanism. J. Biol. Chem. 274:37876–37884, 1999.CrossRefPubMedGoogle Scholar
  47. 47.
    Fukudome, K., S. Kurosawa, D. J. Stearns-Kurosawa, X. He, A. R. Rezaie, and C. T. Esmon. The endothelial cell protein C receptor cell surface expression and direct ligand binding by the soluble receptor. J. Biol. Chem. 271:17491–17498, 1996.CrossRefPubMedGoogle Scholar
  48. 48.
    Geiger, B., J. P. Spatz, and A. D. Bershadsky. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10:21–33, 2009.CrossRefPubMedGoogle Scholar
  49. 49.
    Genové, E., C. Shen, S. Zhang, and C. E. Semino. The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials 26:3341–3351, 2005.CrossRefPubMedGoogle Scholar
  50. 50.
    Gerrity, R., and W. Cliff. The aortic tunica media of the developing rat. I. Quantitative stereologic and biochemical analysis. Lab. Investig. J. Tech. Methods Pathol. 32:585–600, 1975.Google Scholar
  51. 51.
    Giancotti, F. G. Complexity and specificity of integrin signalling. Nat. Cell Biol. 2:E13–E14, 2000.CrossRefPubMedGoogle Scholar
  52. 52.
    Gill, V. L., U. Aich, S. Rao, C. Pohl, and J. Zaia. Disaccharide analysis of glycosaminoglycans using hydrophilic interaction chromatography and mass spectrometry. Anal. Chem. 85:1138–1145, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gillis, C., L. Bengtsson, and B. Wiman. Secretion of prostacyclin, tissue plasminogen activator and its inhibitor by cultured adult human endothelial cells grown on different matrices. Eur. J. Vasc. Endovasc. Surg. 11:127–133, 1996.CrossRefPubMedGoogle Scholar
  54. 54.
    Gopal, S., A. Bober, J. R. Whiteford, H. A. Multhaupt, A. Yoneda, and J. R. Couchman. Heparan sulfate chain valency controls syndecan-4 function in cell adhesion. J. Biol. Chem. M109:056945, 2010.Google Scholar
  55. 55.
    Graf, J., Y. Iwamoto, M. Sasaki, G. R. Martin, H. K. Kleinman, F. A. Robey, and Y. Yamada. Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding. Cell 48:989–996, 1987.CrossRefPubMedGoogle Scholar
  56. 56.
    Griffin, J., J. Fernandez, A. Gale, and L. Mosnier. Activated protein C. J. Thromb. Haemost. 5:73–80, 2007.CrossRefPubMedGoogle Scholar
  57. 57.
    Grover, C. N., J. H. Gwynne, N. Pugh, S. Hamaia, R. W. Farndale, S. M. Best, and R. E. Cameron. Crosslinking and composition influence the surface properties, mechanical stiffness and cell reactivity of collagen-based films. Acta Biomater. 8:3080–3090, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Guan, J.-L., and R. O. Hynes. Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor α4β1. Cell 60:53–61, 1990.CrossRefPubMedGoogle Scholar
  59. 59.
    Hahn, A., S. Regenass, F. Kern, F. Buhler, and T. Resink. Expression of soluble and insoluble fibronectin in rat aorta: effects of angiotensin II and endothelin-1. Biochem. Biophys. Res. Commun. 192:189–197, 1993.CrossRefPubMedGoogle Scholar
  60. 60.
    Halden, Y., R. Angelika, W. Atzenhofer, L. Szilak, A. Wabnig, and J. Andreas. Interleukin-8 binds to syndecan-2 on human endothelial cells. Biochem. J. 377:533–538, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hardingham, T., and A. Fosang. Proteoglycans: many forms and many functions. FASEB J. 6:861–870, 1992.CrossRefPubMedGoogle Scholar
  62. 62.
    Hasan, S. S., and A. F. Siekmann. The same but different: signaling pathways in control of endothelial cell migration. Curr. Opin. Cell Biol. 36:86–92, 2015.CrossRefPubMedGoogle Scholar
  63. 63.
    Hassell, J. R., J. H. Kimura, and V. C. Hascall. Proteoglycan core protein families. Annu. Rev. Biochem. 55:539–567, 1986.CrossRefPubMedGoogle Scholar
  64. 64.
    Hay, E. D. Cell Biology of Extracellular Matrix. New York: Springer, p. 468, 1991.CrossRefGoogle Scholar
  65. 65.
    Hayashi, K., J. A. Madri, and P. D. Yurchenco. Endothelial cells interact with the core protein of basement membrane perlecan through beta 1 and beta 3 integrins: an adhesion modulated by glycosaminoglycan. J. Cell Biol. 119:945–959, 1992.CrossRefPubMedGoogle Scholar
  66. 66.
    Healy, J. M., O. Murayama, T. Maeda, K. Yoshino, K. Sekiguchi, and M. Kikuchi. Peptide ligands for integrin. alpha. v. beta. 3 selected from random phage display libraries. Biochemistry 34:3948–3955, 1995.CrossRefPubMedGoogle Scholar
  67. 67.
    Heino, J. The collagen receptor integrins have distinct ligand recognition and signaling functions. Matrix Biol. 19:319–323, 2000.CrossRefPubMedGoogle Scholar
  68. 68.
    Herbst, T. J., J. B. McCarthy, E. C. Tsilibary, and L. T. Furcht. Differential effects of laminin, intact type IV collagen, and specific domains of type IV collagen on endothelial cell adhesion and migration. J. Cell Biol. 106:1365–1373, 1988.CrossRefPubMedGoogle Scholar
  69. 69.
    Hodivala-Dilke, K. M., A. R. Reynolds, and L. E. Reynolds. Integrins in angiogenesis: multitalented molecules in a balancing act. Cell Tissue Res. 314:131–144, 2003.CrossRefPubMedGoogle Scholar
  70. 70.
    Hozumi, K., N. Suzuki, P. K. Nielsen, M. Nomizu, and Y. Yamada. Laminin α1 chain LG4 module promotes cell attachment through syndecans and cell spreading through integrin α2β1. J. Biol. Chem. 281:32929–32940, 2006.CrossRefPubMedGoogle Scholar
  71. 71.
    Hu, D. D., E. C. Lin, N. L. Kovach, J. R. Hoyer, and J. W. Smith. A biochemical characterization of the binding of osteopontin to integrins αvβ1 and αvβ5. J. Biol. Chem. 270:26232–26238, 1995.CrossRefPubMedGoogle Scholar
  72. 72.
    Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25, 1992.CrossRefPubMedGoogle Scholar
  73. 73.
    Hynes, R. Cell–matrix adhesion in vascular development. J. Thromb. Haemost. 5:32–40, 2007.CrossRefPubMedGoogle Scholar
  74. 74.
    Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326:1216–1219, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Iivanainen, E., V. M. Kähäri, J. Heino, and K. Elenius. Endothelial cell–matrix interactions. Microsc. Res. Tech. 60:13–22, 2003.CrossRefPubMedGoogle Scholar
  76. 76.
    Isik, F. F., N. S. Gibran, Y. C. Jang, L. Sandell, and S. M. Schwartz. Vitronectin decreases microvascular endothelial cell apoptosis. J. Cell. Physiol. 175:149–155, 1998.CrossRefPubMedGoogle Scholar
  77. 77.
    Ivaska, J., and J. Heino. Adhesion receptors and cell invasion: mechanisms of integrin-guided degradation of extracellular matrix. Cell. Mol. Life Sci. CMLS 57:16–24, 2000.CrossRefPubMedGoogle Scholar
  78. 78.
    Kadowitz, P., B. Chapnick, L. Feigen, A. Hyman, P. Nelson, and E. Spannhake. Pulmonary and systemic vasodilator effects of the newly discovered prostaglandin, PGI2. J. Appl. Physiol. 45:408–413, 1978.CrossRefPubMedGoogle Scholar
  79. 79.
    Kalluri, R. Angiogenesis: basement membranes: structure, assembly and role in tumour angiogenesis. Nat. Rev. Cancer 3:422, 2003.CrossRefPubMedGoogle Scholar
  80. 80.
    Karrer, H. An electron microscope study of the aorta in young and in aging mice. J. Ultrastruct. Res. 5:1–27, 1961.CrossRefPubMedGoogle Scholar
  81. 81.
    Kato, H., H. Suzuki, S. Tajima, Y. Ogata, T. Tominaga, A. Sato, and T. Saruta. Angiotensin II stimulates collagen synthesis in cultured vascular smooth muscle cells. J. Hypertens. 9:17–22, 1991.CrossRefPubMedGoogle Scholar
  82. 82.
    Kern, A., and E. E. Marcantonio. Role of the I-domain in collagen binding specificity and activation of the integrins α1β1 and α2β1. J. Cell. Physiol. 176:634–641, 1998.CrossRefPubMedGoogle Scholar
  83. 83.
    Kimura, N., T. Toyoshima, T. Kojima, and M. Shimane. Entactin-2: a new member of basement membrane protein with high homology to entactin/nidogen. Exp. Cell Res. 241:36–45, 1998.CrossRefPubMedGoogle Scholar
  84. 84.
    Kinnunen, T., M. Kaksonen, J. Saarinen, N. Kalkkinen, H. B. Peng, and H. Rauvala. Cortactin-Src kinase signaling pathway is involved in N-syndecan-dependent neurite outgrowth. J. Biol. Chem. 273:10702–10708, 1998.CrossRefPubMedGoogle Scholar
  85. 85.
    Knight, C. G., L. F. Morton, A. R. Peachey, D. S. Tuckwell, R. W. Farndale, and M. J. Barnes. The collagen-binding A-domains of Integrins α1β1 and α2β1recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J. Biol. Chem. 275:35–40, 2000.CrossRefPubMedGoogle Scholar
  86. 86.
    Kramer, R., K. Bensch, P. Davison, and M. Karasek. Basal lamina formation by cultured microvascular endothelial cells. J. Cell Biol. 99:692–698, 1984.CrossRefPubMedGoogle Scholar
  87. 87.
    Kreidberg, J. A. Functions of α3β1 integrin. Curr. Opin. Cell Biol. 12:548–553, 2000.CrossRefPubMedGoogle Scholar
  88. 88.
    Kusuma, S., S. Zhao, and S. Gerecht. The extracellular matrix is a novel attribute of endothelial progenitors and of hypoxic mature endothelial cells. FASEB J. 26:4925–4936, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lamalice, L., F. Le Boeuf, and J. Huot. Endothelial cell migration during angiogenesis. Circul. Res. 100:782–794, 2007.CrossRefGoogle Scholar
  90. 90.
    Lang, I., M. A. Pabst, U. Hiden, and A. Blaschitz. Heterogeneity of microvascular endothelial cells isolated from human term placenta and macrovascular umbilical vein endothelial cells. Eur. J. Cell Biol. 82:163, 2003.CrossRefPubMedGoogle Scholar
  91. 91.
    Lassance, L., H. Miedl, V. Konya, A. Heinemann, B. Ebner, H. Hackl, G. Desoye, and U. Hiden. Differential response of arterial and venous endothelial cells to extracellular matrix is modulated by oxygen. Histochem. Cell Biol. 137:641–655, 2012.CrossRefPubMedGoogle Scholar
  92. 92.
    Leahy, D. J., W. A. Hendrickson, I. Aukhil, and H. P. Erickson. Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258:987–991, 1992.CrossRefPubMedGoogle Scholar
  93. 93.
    Legate, K. R., S. A. Wickström, and R. Fässler. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev. 23:397–418, 2009.CrossRefPubMedGoogle Scholar
  94. 94.
    Leitinger, B., and E. Hohenester. Mammalian collagen receptors. Matrix Biol. 26:146–155, 2007.CrossRefPubMedGoogle Scholar
  95. 95.
    Lerman, A., and A. M. Zeiher. Endothelial function cardiac events. Circulation 111:363–368, 2005.CrossRefPubMedGoogle Scholar
  96. 96.
    Li, S., N. F. Huang, and S. Hsu. Mechanotransduction in endothelial cell migration. J. Cell. Biochem. 96:1110–1126, 2005.CrossRefPubMedGoogle Scholar
  97. 97.
    Li, J.-M., M. J. Menconi, H. B. Wheeler, M. J. Rohrer, V. A. Klassen, J. E. Ansell, and M. C. Appel. Precoating expanded polytetrafluoroethylene grafts alters production of endothelial cell—derived thrombomodulators. J. Vasc. Surg. 15:1010–1017, 1992.CrossRefPubMedGoogle Scholar
  98. 98.
    Lim, S.-T., N. L. G. Miller, X. L. Chen, I. Tancioni, C. T. Walsh, C. Lawson, S. Uryu, S. M. Weis, D. A. Cheresh, and D. D. Schlaepfer. Nuclear-localized focal adhesion kinase regulates inflammatory VCAM-1 expression. J. Cell Biol. 197:907–919, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Liu, X., H. Wu, M. Byrne, S. Krane, and R. Jaenisch. Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc. Natl. Acad. Sci. 94:1852–1856, 1997.CrossRefPubMedGoogle Scholar
  100. 100.
    Lu, Q., and S. Rounds. Focal adhesion kinase and endothelial cell apoptosis. Microvasc. Res. 83:56–63, 2012.CrossRefPubMedGoogle Scholar
  101. 101.
    Lu, A., and R. Sipehia. Antithrombotic and fibrinolytic system of human endothelial cells seeded on PTFE: the effects of surface modification of PTFE by ammonia plasma treatment and ECM protein coatings. Biomaterials 22:1439–1446, 2001.CrossRefPubMedGoogle Scholar
  102. 102.
    Madri, J. A., and S. K. Williams. Capillary endothelial cell cultures: phenotypic modulation by matrix components. J. Cell Biol. 97:153–165, 1983.CrossRefPubMedGoogle Scholar
  103. 103.
    Mahabeleshwar, G. H., J. Chen, W. Feng, P. R. Somanath, O. V. Razorenova, and T. V. Byzova. Integrin affinity modulation in angiogenesis. Cell Cycle 7:335–347, 2008.CrossRefPubMedGoogle Scholar
  104. 104.
    Majerus, E. M., X. Zheng, E. A. Tuley, and J. E. Sadler. Cleavage of the ADAMTS13 propeptide is not required for protease activity. J. Biol. Chem. 278:46643–46648, 2003.CrossRefPubMedGoogle Scholar
  105. 105.
    Marshall, J. F., D. C. Rutherford, A. McCartney, F. Mitjans, S. L. Goodman, and I. R. Hart. Alpha v beta 1 is a receptor for vitronectin and fibrinogen, and acts with alpha 5 beta 1 to mediate spreading on fibronectin. J. Cell Sci. 108:1227–1238, 1995.PubMedGoogle Scholar
  106. 106.
    Martin, G. R., and R. Timpl. Laminin and other basement membrane components. Annu. Rev. Cell Biol. 3:57–85, 1987.CrossRefPubMedGoogle Scholar
  107. 107.
    McGuigan, A. P., and M. V. Sefton. The influence of biomaterials on endothelial cell thrombogenicity. Biomaterials 28:2547–2571, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Medcalf, R. Fibrinolysis, inflammation, and regulation of the plasminogen activating system. J. Thromb. Haemost. 5:132–142, 2007.CrossRefPubMedGoogle Scholar
  109. 109.
    Mehta, D., and A. B. Malik. Signaling mechanisms regulating endothelial permeability. Physiol. Rev. 86:279–367, 2006.CrossRefPubMedGoogle Scholar
  110. 110.
    Michiels, C. Endothelial cell functions. J. Cell. Physiol. 196:430–443, 2003.CrossRefPubMedGoogle Scholar
  111. 111.
    Morgan, M. R., M. J. Humphries, and M. D. Bass. Synergistic control of cell adhesion by integrins and syndecans. Nat. Rev. Mol. Cell Biol. 8:957–969, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Munoz-Pinto, D. J., V. R. Guiza-Arguello, S. M. Becerra-Bayona, J. Erndt-Marino, S. Samavedi, S. Malmut, B. Russell, M. Höök, and M. S. Hahn. Collagen-mimetic hydrogels promote human endothelial cell adhesion, migration and phenotypic maturation. J. Mater. Chem. B 3:7912–7919, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Niu, G., and X. Chen. Why integrin as a primary target for imaging and therapy. Theranostics 1:30–47, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Noguer, O., J. Villena, J. Lorita, S. Vilaró, and M. Reina. Syndecan-2 downregulation impairs angiogenesis in human microvascular endothelial cells. Exp. Cell Res. 315:795–808, 2009.CrossRefPubMedGoogle Scholar
  115. 115.
    Olivero, D. K., and L. T. Furcht. Type IV collagen, laminin, and fibronectin promote the adhesion and migration of rabbit lens epithelial cells in vitro. Investig. Ophthalmol. Vis. Sci. 34:2825–2834, 1993.Google Scholar
  116. 116.
    Orr, A. W., J. M. Sanders, M. Bevard, E. Coleman, I. J. Sarembock, and M. A. Schwartz. The subendothelial extracellular matrix modulates NF-κB activation by flow: a potential role in atherosclerosis. J. Cell. Biol. 169:191–202, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    O’shea, K., and V. Dixit. Unique distribution of the extracellular matrix component thrombospondin in the developing mouse embryo. J. Cell Biol. 107:2737–2748, 1988.CrossRefPubMedGoogle Scholar
  118. 118.
    Osterud, B., M. Bajaj, and S. Bajaj. Sites of tissue factor pathway inhibitor (TFPI) and tissue factor expression under physiologic and pathologic conditions. On behalf of the Subcommittee on Tissue factor Pathway Inhibitor (TFPI) of the Scientific and Standardization Committee of the ISTH. Thromb. Haemost. 73:873–875, 1995.CrossRefPubMedGoogle Scholar
  119. 119.
    Otsuka, F., A. V. Finn, S. K. Yazdani, M. Nakano, F. D. Kolodgie, and R. Virmani. The importance of the endothelium in atherothrombosis and coronary stenting. Nat. Rev. Cardiol. 9:439–453, 2012.CrossRefPubMedGoogle Scholar
  120. 120.
    Packham, M. A. Role of platelets in thrombosis and hemostasis. Can. J. Physiol. Pharmacol. 72:278–284, 1994.CrossRefPubMedGoogle Scholar
  121. 121.
    Pankov, R., and K. M. Yamada. Fibronectin at a glance. J. Cell Sci. 115:3861–3863, 2002.CrossRefPubMedGoogle Scholar
  122. 122.
    Parmar, K. M., H. B. Larman, G. Dai, Y. Zhang, E. T. Wang, S. N. Moorthy, J. R. Kratz, Z. Lin, M. K. Jain, and M. A. Gimbrone, Jr. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J. Clin. Investig. 116:49–58, 2006.CrossRefPubMedGoogle Scholar
  123. 123.
    Pearson, J. D. Endothelial cell function and thrombosis. Best Pract. Res. Clin. Haematol. 12:329–341, 1999.CrossRefGoogle Scholar
  124. 124.
    Perret, S., J. A. Eble, P. R.-M. Siljander, C. Merle, R. W. Farndale, M. Theisen, and F. Ruggiero. Prolyl-hydroxylation of collagen type I is required for efficient binding to integrin α1β1 and platelet GPVI but not to α2β1. J. Biol. Chem. 278(32):29873–29879, 2003.CrossRefPubMedGoogle Scholar
  125. 125.
    Pytela, R., M. D. Pierschbacher, and E. Ruoslahti. A 125/115-kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin. Proc. Natl. Acad. Sci. USA 82:5766–5770, 1985.CrossRefPubMedGoogle Scholar
  126. 126.
    Raines, E. W. The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease. Int. J. Exp. Pathol. 81:173–182, 2000.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Ramesh, S., C. N. Morrell, C. Tarango, G. D. Thomas, I. S. Yuhanna, G. Girardi, J. Herz, R. T. Urbanus, P. G. de Groot, and P. E. Thorpe. Antiphospholipid antibodies promote leukocyte–endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via β2GPI and apoER2. J. Clin. Investig. 121:120–131, 2011.CrossRefPubMedGoogle Scholar
  128. 128.
    Ricard-Blum, S. The Collagen Family. Cold Spring Harb. Perspect. Biol. 3:a004978, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Rodgers, G. M. Hemostatic properties of normal and perturbed vascular cells. FASEB J. 2:116–123, 1988.CrossRefPubMedGoogle Scholar
  130. 130.
    Rowe, S. L., and J. P. Stegemann. Interpenetrating collagen-fibrin composite matrices with varying protein contents and ratios. Biomacromolecules 7:2942–2948, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Rüegg, C., and A. Mariotti. Vascular integrins: pleiotropic adhesion and signaling molecules in vascular homeostasis and angiogenesis. Cell. Mol. Life Sci. CMLS 60:1135–1157, 2003.CrossRefPubMedGoogle Scholar
  132. 132.
    Sakata, Y., S. Curriden, D. Lawrence, J. H. Griffin, and D. J. Loskutoff. Activated protein C stimulates the fibrinolytic activity of cultured endothelial cells and decreases antiactivator activity. Proc. Natl. Acad. Sci. 82:1121–1125, 1985.CrossRefPubMedGoogle Scholar
  133. 133.
    Sandberg, L. B., N. Weissman, and W. R. Gray. Structural features of tropoelastin related to the sites of cross-links in aortic elastin. Biochemistry 10:52–56, 1971.CrossRefPubMedGoogle Scholar
  134. 134.
    Schmidt, A., K. Brixius, and W. Bloch. Endothelial precursor cell migration during vasculogenesis. Circul. Res. 101:125–136, 2007.CrossRefGoogle Scholar
  135. 135.
    Schwartz, M. A. Integrin signaling revisited. Trends Cell Biol. 11:466–470, 2001.CrossRefPubMedGoogle Scholar
  136. 136.
    Schwarzbauer, J. Basement membrane: Putting up the barriers. Curr. Biol. 9:R242–R244, 1999.CrossRefPubMedGoogle Scholar
  137. 137.
    Schwarzbauer, J. E., C. S. Spencer, and C. L. Wilson. Selective secretion of alternatively spliced fibronectin variants. J. Cell Biol. 109:3445–3453, 1989.CrossRefPubMedGoogle Scholar
  138. 138.
    Semenza, G. L. Vascular responses to hypoxia and ischemia. Arterioscler. Thromb. Vasc. Biol. 30:648–652, 2010.CrossRefPubMedGoogle Scholar
  139. 139.
    Senger, D. R., C. A. Perruzzi, M. Streit, V. E. Koteliansky, A. R. de Fougerolles, and M. Detmar. The α1β1 and α2β1 integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am. J. Pathol. 160:195–204, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Shattil, S. J., and M. H. Ginsberg. Perspectives series: cell adhesion in vascular biology. Integrin signaling in vascular biology. J. Clin. Investig. 100:1–5, 1997.CrossRefPubMedGoogle Scholar
  141. 141.
    Shim, K., P. J. Anderson, E. A. Tuley, E. Wiswall, and J. E. Sadler. Platelet-VWF complexes are preferred substrates of ADAMTS13 under fluid shear stress. Blood 111:651–657, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Short, S. M., G. A. Talbott, and R. L. Juliano. Integrin-mediated signaling events in human endothelial cells. Mol. Biol. Cell 9:1969–1980, 1998.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Staatz, W., K. Fok, M. Zutter, S. Adams, B. Rodriguez, and S. Santoro. Identification of a tetrapeptide recognition sequence for the alpha 2 beta 1 integrin in collagen. J. Biol. Chem. 266:7363–7367, 1991.PubMedGoogle Scholar
  144. 144.
    Stenman, S., and A. Vaheri. Distribution of a major connective tissue protein, fibronectin, in normal human tissues. J. Exp. Med. 147:1054–1064, 1978.CrossRefPubMedGoogle Scholar
  145. 145.
    Sumpio, B. E., J. Timothy Riley, and A. Dardik. Cells in focus: endothelial cell. Int. J. Biochem. Cell Biol. 34:1508–1512, 2002.CrossRefPubMedGoogle Scholar
  146. 146.
    Swee, M. H., W. C. Parks, and R. A. Pierce. Developmental regulation of elastin production. Expression of tropoelastin pre-mRNA persists after down-regulation of steady-state mRNA levels. J. Biol. Chem. 270:14899–14906, 1995.CrossRefPubMedGoogle Scholar
  147. 147.
    Szmitko, P. E., C.-H. Wang, R. D. Weisel, J. R. de Almeida, T. J. Anderson, and S. Verma. New markers of inflammation and endothelial cell activation part I. Circulation 108:1917–1923, 2003.CrossRefPubMedGoogle Scholar
  148. 148.
    Timpl, R., M. Dziadek, S. Fujiwara, H. Nowack, and G. Wick. Nidogen: a new, self-aggregating basement membrane protein. Eur. J. Biochem. 137:455–465, 1983.CrossRefPubMedGoogle Scholar
  149. 149.
    Timpl, R., H. Rohde, P. G. Robey, S. I. Rennard, J.-M. Foidart, and G. R. Martin. Laminin: a glycoprotein from basement membranes. J. Biol. Chem. 254:9933–9937, 1979.PubMedGoogle Scholar
  150. 150.
    Tsamis, A., J. T. Krawiec, and D. A. Vorp. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review. J. R. Soc. Interface 10:20121004, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Turner, N. A., L. Nolasco, Z. M. Ruggeri, and J. L. Moake. Endothelial cell ADAMTS-13 and VWF: production, release, and VWF string cleavage. Blood 114:5102–5111, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Underwood, P. A., F. A. Bennett, A. Kirkpatrick, P. A. Bean, and B. A. Moss. Evidence for the location of a binding sequence for the α2β1 integrin of endothelial cells, in the β1 subunit of laminin. Biochem. J. 309:765–771, 1995.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Valentijn, K. M., L. F. van Driel, M. J. Mourik, G.-J. Hendriks, T. J. Arends, A. J. Koster, and J. A. Valentijn. Multigranular exocytosis of Weibel-Palade bodies in vascular endothelial cells. Blood 116:1807–1816, 2010.CrossRefPubMedGoogle Scholar
  154. 154.
    van Hinsbergh, V. W. The endothelium: vascular control of haemostasis. Eur. J. Obstet. Gynecol. Reprod. Biol. 95:198–201, 2001.CrossRefPubMedGoogle Scholar
  155. 155.
    van Hinsbergh, V. W. Endothelium—Role in Regulation of Coagulation and InflammationSeminars in Immunopathology, New York: Springer, pp. 93–106, 2012.Google Scholar
  156. 156.
    Van Hinsbergh, V., R. Bertina, A. Van Wijngaarden, N. Van Tilburg, J. Emeis, and F. Haverkate. Activated protein C decreases plasminogen activator-inhibitor activity in endothelial cell-conditioned medium. Blood 65:444–451, 1985.PubMedGoogle Scholar
  157. 157.
    Vogel, B. E., S.-J. Lee, A. Hildebrand, W. Craig, M. D. Pierschbacher, F. Wong-Staal, and E. Ruoslahti. A novel integrin specificity exemplified by binding of the alpha v beta 5 integrin to the basic domain of the HIV Tat protein and vitronectin. J. Cell Biol. 121:461–468, 1993.CrossRefPubMedGoogle Scholar
  158. 158.
    Vuong, T. T., T. M. Reine, A. Sudworth, T. G. Jenssen, and S. O. Kolset. Syndecan-4 is a major syndecan in primary human endothelial cells in vitro, modulated by inflammatory stimuli and involved in wound healing. J. Histochem. Cytochem. 63:280–292, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Vuoriluoto, K., J. Jokinen, K. Kallio, M. Salmivirta, J. Heino, and J. Ivaska. Syndecan-1 supports integrin α2β1-mediated adhesion to collagen. Exp. Cell Res. 314:3369–3381, 2008.CrossRefPubMedGoogle Scholar
  160. 160.
    Wagenseil, J. E., and R. P. Mecham. Vascular extracellular matrix and arterial mechanics. Physiol. Rev. 89:957–989, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Warner, T. D., P. C. Armstrong, M. V. Chan, and R. B. Knowles. The Importance of Endothelium-Derived Mediators to the Efficacy of Dual Anti-platelet Therapy. New York: Taylor & Francis, 2016.CrossRefGoogle Scholar
  162. 162.
    White, T. A., T. Johnson, N. Zarzhevsky, C. Tom, S. Delacroix, E. W. Holroyd, S. A. Maroney, R. Singh, S. Pan, and W. P. Fay. Endothelial-derived tissue factor pathway inhibitor regulates arterial thrombosis but is not required for development or hemostasis. Blood 116:1787–1794, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Whorton, A., C. Willis, R. Kent, and S. Young. The role of calcium in the regulation of prostacyclin synthesis by porcine aortic endothelial cells. Lipids 19:17–24, 1984.CrossRefPubMedGoogle Scholar
  164. 164.
    Winterwood, N. E., A. Varzavand, M. N. Meland, L. K. Ashman, and C. S. Stipp. A critical role for tetraspanin CD151 in α3β1 and α6β4 integrin-dependent tumor cell functions on laminin-5. Mol. Biol. Cell 17:2707–2721, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Wissink, M., R. Beernink, A. Poot, G. Engbers, T. Beugeling, W. van Aken, and J. Feijen. Relation between cell density and the secretion of von Willebrand factor and prostacyclin by human umbilical vein endothelial cells. Biomaterials 22:2283–2290, 2001.CrossRefPubMedGoogle Scholar
  166. 166.
    Woods, A. Syndecans: transmembrane modulators of adhesion and matrix assembly. J. Clin. Investig. 107:935–941, 2001.CrossRefPubMedGoogle Scholar
  167. 167.
    Wu, M. D. K. K., and M. D. P. Thiagarajan. Role of endothelium in thrombosis and hemostasis. Annu. Rev. Med. 47:315–331, 1996.CrossRefPubMedGoogle Scholar
  168. 168.
    Xu, Y., S. Gurusiddappa, R. L. Rich, R. T. Owens, D. R. Keene, R. Mayne, A. Höök, and M. Höök. Multiple binding sites in collagen type I for the integrins α1β1 and α2β1. J. Biol. Chem. 275:38981–38989, 2000.CrossRefPubMedGoogle Scholar
  169. 169.
    Xu, Y., D. R. Keene, J. M. Bujnicki, M. Höök, and S. Lukomski. Streptococcal Scl1 and Scl2 proteins form collagen-like triple helices. J. Biol. Chem. 277:27312–27318, 2002.CrossRefPubMedGoogle Scholar
  170. 170.
    Yeh, H. C., Z. Zhou, H. Choi, S. Tekeoglu, W. May, C. Wang, N. Turner, F. Scheiflinger, J. L. Moake, and J. F. Dong. Disulfide bond reduction of von Willebrand factor by ADAMTS-13. J. Thromb. Haemost. 8:2778–2788, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Yurchenco, P. D., and J. C. Schittny. Molecular architecture of basement membranes. FASEB J. 4:1577–1590, 1990.CrossRefPubMedGoogle Scholar
  172. 172.
    Yurchenco, P. D., E. Tsilibary, A. Charonis, and H. Furthmayr. Laminin polymerization in vitro. Evidence for a two-step assembly with domain specificity. J. Biol. Chem. 260:7636–7644, 1985.PubMedGoogle Scholar
  173. 173.
    Zaidel-Bar, R., S. Itzkovitz, A. Ma’ayan, R. Iyengar, and B. Geiger. Functional atlas of the integrin adhesome. Nat. Cell Biol. 9:858–867, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Zamir, E., and B. Geiger. Molecular complexity and dynamics of cell–matrix adhesions. J. Cell Sci. 114:3583–3590, 2001.PubMedGoogle Scholar
  175. 175.
    Zhang, Z., A. O. Morla, K. Vuori, J. S. Bauer, R. Juliano, and E. Ruoslahti. The alpha v beta 1 integrin functions as a fibronectin receptor but does not support fibronectin matrix assembly and cell migration on fibronectin. J. Cell Biol. 122:235–242, 1993.CrossRefPubMedGoogle Scholar
  176. 176.
    Zhang, J. C., J. Wojta, and B. R. Binder. Growth and fibrinolytic parameters of human umbilical vein endothelial cells seeded onto cardiovascular grafts. J. Thorac. Cardiovasc. Surg. 109:1059–1065, 1995.CrossRefPubMedGoogle Scholar
  177. 177.
    Zhao, X., and J.-L. Guan. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv. Drug Deliv. Rev. 63:610–615, 2011.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Biomedical EngineeringUniversity of TexasAustinUSA

Personalised recommendations