Annals of Biomedical Engineering

, Volume 47, Issue 1, pp 39–59 | Cite as

Pentagalloyl Glucose and Its Functional Role in Vascular Health: Biomechanics and Drug-Delivery Characteristics

  • Sourav S. Patnaik
  • Dan T. Simionescu
  • Craig J. Goergen
  • Kenneth Hoyt
  • Shashank Sirsi
  • Ender A. FinolEmail author


Pentagalloyl glucose (PGG) is an elastin-stabilizing polyphenolic compound that has significant biomedical benefits, such as being a free radical sink, an anti-inflammatory agent, anti-diabetic agent, enzymatic resistant properties, etc. This review article focuses on the important benefits of PGG on vascular health, including its role in tissue mechanics, the different modes of pharmacological administration (e.g., oral, intravenous and endovascular route, intraperitoneal route, subcutaneous route, and nanoparticle based delivery and microbubble-based delivery), and its potential therapeutic role in vascular diseases such as abdominal aortic aneurysms (AAA). In particular, the use of PGG for AAA suppression and prevention has been demonstrated to be effective only in the calcium chloride rat AAA model. Therefore, in this critical review we address the challenges that lie ahead for the clinical translation of PGG as an AAA growth suppressor.


Pentagalloyl glucose Abdominal aortic aneurysms Elastin Collagen Drug delivery 


60Co-γ rays

Cobalt-60 gamma rays


6-Keto-prostaglandin 1α




Alanine aminotransferase


Activator protein-1


Arachidonic acid


Metastatic mouse melanoma cells

BHK-21 cells

Baby hamster kidney cell


Transfected microglial cell line




50% cytotoxic concentration


Maximum serum concentration that a drug achieves in a test area of the body after the drug has been administrated and before the administration of a second dose

CML cell line K56

Human chronic myelogenous leukemia






Acetyl-CoA:1-alkyl-sn-glycero-3-phosphocholine acetyltransferase


The concentration of a compound where 50% of its maximal effect is observed


Epidermal growth factor


High-affinity IgE receptors


Glycoprotein IIb/IIIa inhibitors


Glutathione peroxidase

HBZY-1 cells

Glomerular mesangial cell line


Human peripheral blood mononuclear cells


Human umbilical vein endothelial cells


Basic salivary protein


Half maximal inhibitory concentration


Intercellular adhesion molecule 1












Dissociation constant—represents ligand-receptor affinity


Mouse bone marrow-derived mast cells


Monocyte chemoattractant protein 1


Nuclear factor-kB

NO-cGMP pathway

Nitric oxide/cyclic guanosine monophosphate signaling pathway


Nitric oxide synthase


Not reported


Nonstructural protein 3




Human prostate cancer cell line


Polymorphonuclear leukocyte system


Recombinant human aldose reductase


Reactive oxygen species


Severe combined immunodeficiency


Human skin melanoma cell line


Superoxide dismutase


Specificity protein 1


Transforming growth factor beta 1


Time at which the Cmax is observed


Tumor necrosis factor alpha


Thromboxane B2


(Pro-) monocytic cell lines

V79-4 cells

Chinese hamster lung fibroblasts


Xanthine oxidase



The authors have no conflicts of interest to disclose and would like to acknowledge research funding from American Heart Association Award #16CSA28480006. The content is solely the responsibility of the authors and does not necessarily represent the official views of the American Heart Association.

Supplementary material

10439_2018_2145_MOESM1_ESM.docx (96 kb)
Supplementary material 1 (DOCX 95 kb)


  1. 1.
    Abdel-Mageed, W. M., S. A. Bayoumi, C. Chen, C. J. Vavricka, L. Li, A. Malik, H. Dai, F. Song, L. Wang, J. Zhang, G. F. Gao, Y. Lv, L. Liu, X. Liu, H. M. Sayed, and L. Zhang. Benzophenone C-glucosides and gallotannins from mango tree stem bark with broad-spectrum anti-viral activity. Bioorgan. Med. Chem. 22:2236–2243, 2014.Google Scholar
  2. 2.
    Abdelwahed, A., I. Bouhlel, I. Skandrani, K. Valenti, M. Kadri, P. Guiraud, R. Steiman, A. M. Mariotte, K. Ghedira, F. Laporte, M. G. Dijoux-Franca, and L. Chekir-Ghedira. Study of antimutagenic and antioxidant activities of gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus. Confirmation by microarray expression profiling. Chem. Biol. Interact. 165:1–13, 2007.Google Scholar
  3. 3.
    Abdul-Hussien, H., R. Hanemaaijer, J. H. Verheijen, J. H. van Bockel, R. H. Geelkerken, and J. H. Lindeman. Doxycycline therapy for abdominal aneurysm: improved proteolytic balance through reduced neutrophil content. J. Vasc. Surg. 49:741–749, 2009.Google Scholar
  4. 4.
    Adolph, R., D. A. Vorp, D. L. Steed, M. W. Webster, M. V. Kameneva, and S. C. Watkins. Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J. Vasc. Surg. 25:916–926, 1997.Google Scholar
  5. 5.
    Allaire, E. Cyclosporine A in patients with small diameter abdominal aortic aneurysm., 2010.
  6. 6.
    Alkilani, A. Z., M. T. McCrudden, and R. F. Donnelly. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 7:438–470, 2015.Google Scholar
  7. 7.
    Appis, A. W., M. J. Tracy, and S. B. Feinstein. Update on the safety and efficacy of commercial ultrasound contrast agents in cardiac applications. Echo Res. Pract. 2:R55–R62, 2015.Google Scholar
  8. 8.
    Bahadar, H., F. Maqbool, K. Niaz, and M. Abdollahi. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed. J. 20:1–11, 2016.Google Scholar
  9. 9.
    Bajaj, G., and Y. Yeo. Drug delivery systems for intraperitoneal therapy. Pharm. Res. 27:735–738, 2010.Google Scholar
  10. 10.
    Barenholz, Y. Doxil(R)–the first FDA-approved nano-drug: lessons learned. J. Control Release 160:117–134, 2012.Google Scholar
  11. 11.
    Baxter, B. T., Curci, J., Matsumura, J., and Terrin, M. L. Non-invasive treatment of abdominal aortic aneurysm clinical trial., 2016.
  12. 12.
    Baxter, B. T., V. A. Davis, D. J. Minion, Y. P. Wang, T. G. Lynch, and B. M. McManus. Abdominal aortic aneurysms are associated with altered matrix proteins of the nonaneurysmal aortic segments. J. Vasc. Surg. 19:797–802, 1994; ((Discussion 803)).Google Scholar
  13. 13.
    Baxter, N. J., T. H. Lilley, E. Haslam, and M. P. Williamson. Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry 36:5566–5577, 1997.Google Scholar
  14. 14.
    Behrendt, P., P. Perin, N. Menzel, D. Banda, S. Pfaender, M. P. Alves, V. Thiel, P. Meuleman, C. C. Colpitts, L. M. Schang, F. W. R. Vondran, Anggakusuma, M. P. Manns, E. Steinmann, and T. Pietschmann. Pentagalloylglucose, a highly bioavailable polyphenolic compound present in Cortex moutan, efficiently blocks hepatitis C virus entry. Antivir. Res. 147:19–28, 2017.Google Scholar
  15. 15.
    Bennick, A. Interaction of plant polyphenols with salivary proteins. Crit. Rev. Oral Biol. Med. 13:184–196, 2002.Google Scholar
  16. 16.
    Bhimani, R. S., W. Troll, D. Grunberger, and K. Frenkel. Inhibition of oxidative stress in HeLa cells by chemopreventive agents. Cancer Res. 53:4528–4533, 1993.Google Scholar
  17. 17.
    Bicknell, C. D., G. Kiru, E. Falaschetti, J. T. Powell, N. R. Poulter, and A. Collaborators. An evaluation of the effect of an angiotensin-converting enzyme inhibitor on the growth rate of small abdominal aortic aneurysms: a randomized placebo-controlled trial (AARDVARK). Eur. Heart J. 37:3213–3221, 2016.Google Scholar
  18. 18.
    Bing, S. J., M. J. Kim, E. Park, G. Ahn, D. S. Kim, R. K. Ko, N. H. Lee, T. Shin, J. W. Park, and Y. Jee. 1,2,3,4,6-penta-O-galloyl-beta-d-glucose protects splenocytes against radiation-induced apoptosis in murine splenocytes. Biol. Pharm. Bull. 33:1122–1127, 2010.Google Scholar
  19. 19.
    Blanchard, J. F., H. K. Armenian, and P. P. Friesen. Risk factors for abdominal aortic aneurysm: results of a case-control study. Am. J. Epidemiol. 151:575–583, 2000.Google Scholar
  20. 20.
    Bors, W., L. Y. Foo, N. Hertkorn, C. Michel, and K. Stettmaier. Chemical studies of proanthocyanidins and hydrolyzable tannins. Antioxid. Redox Signal. 3:995–1008, 2001.Google Scholar
  21. 21.
    Cai, K., and A. Bennick. Effect of salivary proteins on the transport of tannin and quercetin across intestinal epithelial cells in culture. Biochem. Pharmacol. 72:974–980, 2006.Google Scholar
  22. 22.
    Cai, K., A. E. Hagerman, R. E. Minto, and A. Bennick. Decreased polyphenol transport across cultured intestinal cells by a salivary proline-rich protein. Biochem. Pharmacol. 71:1570–1580, 2006.Google Scholar
  23. 23.
    Cao, Y., K. B. Himmeldirk, Y. Qian, Y. Ren, A. Malki, and X. Chen. Biological and biomedical functions of penta-O-galloyl-d-glucose and its derivatives. J. Nat. Med. 68:465–472, 2014.Google Scholar
  24. 24.
    Carmo, M., L. Colombo, A. Bruno, F. R. M. Corsi, L. Roncoroni, M. S. Cuttin, F. Radice, E. Mussini, and P. G. Settembrini. Alteration of elastin, collagen and their cross-links in abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 23:543–549, 2002.Google Scholar
  25. 25.
    Chai, Y., H. J. Lee, A. A. Shaik, K. Nkhata, C. Xing, J. Zhang, S. J. Jeong, S. H. Kim, and J. Lu. Penta-O-galloyl-beta-d-glucose induces G1 arrest and DNA replicative S-phase arrest independently of cyclin-dependent kinase inhibitor 1A, cyclin-dependent kinase inhibitor 1B and P53 in human breast cancer cells and is orally active against triple negative xenograft growth. Breast Cancer Res. 12:R67, 2010.Google Scholar
  26. 26.
    Charlton, A. J., N. J. Baxter, M. L. Khan, A. J. Moir, E. Haslam, A. P. Davies, and M. P. Williamson. Polyphenol/peptide binding and precipitation. J. Agric. Food Chem. 50:1593–1601, 2002.Google Scholar
  27. 27.
    Charlton, A. J., N. J. Baxter, T. H. Lilley, E. Haslam, C. J. McDonald, and M. P. Williamson. Tannin interactions with a full-length human salivary proline-rich protein display a stronger affinity than with single proline-rich repeats. FEBS Lett. 382:289–292, 1996.Google Scholar
  28. 28.
    Chauhan, S. S., C. A. Gutierrez, M. Thirugnanasambandam, V. De Oliveira, S. C. Muluk, M. K. Eskandari, and E. A. Finol. The association between geometry and wall stress in emergently repaired abdominal aortic aneurysms. Ann. Biomed. Eng. 45:1908–1916, 2017.Google Scholar
  29. 29.
    Chen, Y., and A. E. Hagerman. Characterization of soluble non-covalent complexes between bovine serum albumin and beta-1,2,3,4,6-penta-O-galloyl-d-glucopyranose by MALDI-TOF MS. J. Agric. Food Chem. 52:4008–4011, 2004.Google Scholar
  30. 30.
    Chen, Y., and A. E. Hagerman. Reaction pH and protein affect the oxidation products of beta-pentagalloyl glucose. Free Rad. Res. 39:117–124, 2005.Google Scholar
  31. 31.
    Cheng, J.-T., and Hsu, F.-L. Tannin derivatives and their use for treatment of hypertension. Google Patents, 1993.
  32. 32.
    Chow, J. P., D. T. Simionescu, A. L. Carter, and A. Simionescu. Immunomodulatory effects of adipose tissue-derived stem cells on elastin scaffold remodeling in diabetes. Tissue Eng. Regen. Med. 13:701–712, 2016.Google Scholar
  33. 33.
    Chow, J. P., D. T. Simionescu, H. Warner, B. Wang, S. S. Patnaik, J. Liao, and A. Simionescu. Mitigation of diabetes-related complications in implanted collagen and elastin scaffolds using matrix-binding polyphenol. Biomaterials 34:685–695, 2013.Google Scholar
  34. 34.
    Chu, A. Healthy Harvest, Hale Heart. J. Cardiovasc. Disord. 1:3, 2014.
  35. 35.
    Chuang, T. H., C. Stabler, A. Simionescu, and D. T. Simionescu. Polyphenol-stabilized tubular elastin scaffolds for tissue engineered vascular grafts. Tissue Eng. A 15:2837–2851, 2009.Google Scholar
  36. 36.
    Cryan, L. M., L. Bazinet, K. A. Habeshian, S. Cao, J. Clardy, K. A. Christensen, and M. S. Rogers. 1,2,3,4,6-Penta-O-galloyl-beta-d-glucopyranose inhibits angiogenesis via inhibition of capillary morphogenesis gene 2. J. Med. Chem. 56:1940–1945, 2013.Google Scholar
  37. 37.
    Daugherty, A., M. W. Manning, and L. A. Cassis. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J. Clin. Invest. 105:1605–1612, 2000.Google Scholar
  38. 38.
    De Jong, W. H., and P. J. Borm. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomed. 3:133–149, 2008.Google Scholar
  39. 39.
    Deborde, C., D. T. Simionescu, C. Wright, J. Liao, L. N. Sierad, and A. Simionescu. Stabilized collagen and elastin-based scaffolds for mitral valve tissue engineering. Tissue Eng. A 22:1241–1251, 2016.Google Scholar
  40. 40.
    Dimcevski, G., S. Kotopoulis, T. Bjanes, D. Hoem, J. Schjott, B. T. Gjertsen, M. Biermann, A. Molven, H. Sorbye, E. McCormack, M. Postema, and O. H. Gilja. A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer. J. Control Release 243:172–181, 2016.Google Scholar
  41. 41.
    Dobreva, M. A., R. A. Frazier, I. Mueller-Harvey, L. A. Clifton, A. Gea, and R. J. Green. Binding of pentagalloyl glucose to two globular proteins occurs via multiple surface sites. Biomacromolecules 12:710–715, 2011.Google Scholar
  42. 42.
    Dong, H., S. X. Chen, R. M. Kini, and H. X. Xu. Effects of tannins from Geum japonicum on the catalytic activity of thrombin and factor Xa of blood coagulation cascade. J. Nat. Prod. 61:1356–1360, 1998.Google Scholar
  43. 43.
    Emeto, T. I., F. O. Alele, A. M. Smith, F. M. Smith, T. Dougan, and J. Golledge. Use of nanoparticles as contrast agents for the functional and molecular imaging of abdominal aortic aneurysm. Front. Cardiovasc. Med. 4:16, 2017.Google Scholar
  44. 44.
    Fajemiroye, J. O., K. Adam, K. Z. Jordan, C. E. Alves, and A. A. Aderoju. Evaluation of anxiolytic and antidepressant-like activity of aqueous leaf extract of Nymphaea Lotus Linn. in Mice. Iran J. Pharm. Res. 17:613–626, 2018.Google Scholar
  45. 45.
    Feinstein, S. B., J. Cheirif, F. J. Ten Cate, P. R. Silverman, P. A. Heidenreich, C. Dick, R. M. Desir, W. F. Armstrong, M. A. Quinones, and P. M. Shah. Safety and efficacy of a new transpulmonary ultrasound contrast agent: initial multicenter clinical results. J. Am. Coll. Cardiol. 16:316–324, 1990.Google Scholar
  46. 46.
    Feldman, K. S., K. Sahasrabudhe, M. D. Lawlor, S. L. Wilson, C. H. Lang, and W. J. Scheuchenzuber. In vitro and In vivo inhibition of LPS-stimulated tumor necrosis factor-alpha secretion by the gallotannin beta-d-pentagalloylglucose. Bioorgan. Med. Chem. Lett. 11:1813–1815, 2001.Google Scholar
  47. 47.
    Fercana, G., D. Bowser, M. Portilla, E. M. Langan, C. G. Carsten, D. L. Cull, L. N. Sierad, and D. T. Simionescu. Platform technologies for decellularization, tunic-specific cell seeding, and in vitro conditioning of extended length, small diameter vascular grafts. Tissue Eng. C 20:1016–1027, 2014.Google Scholar
  48. 48.
    Ferguson, C. D., P. Clancy, B. Bourke, P. J. Walker, A. Dear, T. Buckenham, P. Norman, and J. Golledge. Association of statin prescription with small abdominal aortic aneurysm progression. Am. Heart J. 159:307–313, 2010.Google Scholar
  49. 49.
    Geers, B., I. Lentacker, N. N. Sanders, J. Demeester, S. Meairs, and S. C. De Smedt. Self-assembled liposome-loaded microbubbles: the missing link for safe and efficient ultrasound triggered drug-delivery. J. Control Release 152:249–256, 2011.Google Scholar
  50. 50.
    Genfa, L., Z. Jiang, Z. Hong, Z. Yimin, W. Liangxi, W. Guo, H. Ming, J. Donglen, and W. Lizhao. The screening and isolation of an effective anti-endotoxin monomer from Radix Paeoniae Rubra using affinity biosensor technology. Int. Immunopharmacol. 5:1007–1017, 2005.Google Scholar
  51. 51.
    Gilabert, R., L. Bunesch, M. I. Real, A. Garcia-Criado, M. Burrel, J. R. Ayuso, M. Barrufet, X. Montana, and V. Riambau. Evaluation of abdominal aortic aneurysm after endovascular repair: prospective validation of contrast-enhanced US with a second-generation US contrast agent. Radiology 264:269–277, 2012.Google Scholar
  52. 52.
    Golledge, J., and P. E. Norman. Current status of medical management for abdominal aortic aneurysm. Atherosclerosis 217:57–63, 2011.Google Scholar
  53. 53.
    Golledge, J., P. E. Norman, M. P. Murphy, and R. L. Dalman. Challenges and opportunities in limiting abdominal aortic aneurysm growth. J. Vasc. Surg. 65:225–233, 2017.Google Scholar
  54. 54.
    Golledge, J., and J. T. Powell. Medical management of abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 34:267–273, 2007.Google Scholar
  55. 55.
    Goto, H., Y. Shimada, Y. Akechi, K. Kohta, M. Hattori, and K. Terasawa. Endothelium-dependent vasodilator effect of extract prepared from the roots of Paeonia lactiflora on isolated rat aorta. Planta Med. 62:436–439, 1996.Google Scholar
  56. 56.
    Gramiak, R., and P. M. Shah. Echocardiography of the aortic root. Invest. Radiol. 3:356–366, 1968.Google Scholar
  57. 57.
    Guessous, I., D. Periard, D. Lorenzetti, J. Cornuz, and W. A. Ghali. The efficacy of pharmacotherapy for decreasing the expansion rate of abdominal aortic aneurysms: a systematic review and meta-analysis. PLoS ONE 3:e1895, 2008.Google Scholar
  58. 58.
    Gupta, A., D. Thompson, A. Whitehouse, T. Collier, B. Dahlof, N. Poulter, R. Collins, and P. Sever. Adverse events associated with unblinded, but not with blinded, statin therapy in the Anglo-Scandinavian cardiac outcomes trial—lipid-lowering arm (ASCOT-LLA): a randomised double-blind placebo-controlled trial and its non-randomised non-blind extension phase. Lancet 389:2473–2481, 2017.Google Scholar
  59. 59.
    Gyemant, G., A. Zajacz, B. Becsi, C. Ragunath, N. Ramasubbu, F. Erdodi, G. Batta, and L. Kandra. Evidence for pentagalloyl glucose binding to human salivary alpha-amylase through aromatic amino acid residues. Biochim. Biophys. Acta 1794:291–296, 2009.Google Scholar
  60. 60.
    Hagerman, A. E., M. E. Rice, and N. T. Ritchard. Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin16(4 → 8) catechin (procyanidin). J. Agric. Food Chem. 46:2590–2595, 1998.Google Scholar
  61. 61.
    Heath, C. H., A. Sorace, J. Knowles, E. Rosenthal, and K. Hoyt. Microbubble therapy enhances anti-tumor properties of cisplatin and cetuximab in vitro and in vivo. Otolaryngol. Head Neck Surg. 146:938–945, 2012.Google Scholar
  62. 62.
    Ho, L.-L., W.-J. Chen, S.-Y. Lin-Shiau, and J.-K. Lin. Penta-O-galloyl-β-d-glucose inhibits the invasion of mouse melanoma by suppressing metalloproteinase-9 through down-regulation of activator protein-1. Eur. J. Pharmacol. 453:149–158, 2002.Google Scholar
  63. 63.
    Hoff, L., Sontum, P. C., and Hoff, B. Acoustic properties of shell-encapsulated, gas-filled ultrasound contrast agents. In: 1996 IEEE US Symp. IEEE, 1996, pp. 1441–1444.Google Scholar
  64. 64.
    Hofmann, T., A. Glabasnia, B. Schwarz, K. N. Wisman, K. A. Gangwer, and A. E. Hagerman. Protein binding and astringent taste of a polymeric procyanidin, 1,2,3,4,6-penta-O-galloyl-beta-d-glucopyranose, castalagin, and grandinin. J. Agric. Food Chem. 54:9503–9509, 2006.Google Scholar
  65. 65.
    Hofmann, T., E. Nebehaj, and L. Albert. Antioxidant properties and detailed polyphenol profiling of European hornbeam (Carpinus betulus L.) leaves by multiple antioxidant capacity assays and high-performance liquid chromatography/multistage electrospray mass spectrometry. Ind. Crops Prod. 87:340–349, 2016.Google Scholar
  66. 66.
  67. 67.
    Huh, J. E., E. O. Lee, M. S. Kim, K. S. Kang, C. H. Kim, B. C. Cha, Y. J. Surh, and S. H. Kim. Penta-O-galloyl-beta-d-glucose suppresses tumor growth via inhibition of angiogenesis and stimulation of apoptosis: roles of cyclooxygenase-2 and mitogen-activated protein kinase pathways. Carcinogenesis 26:1436–1445, 2005.Google Scholar
  68. 68.
    Isenburg, J. C., N. V. Karamchandani, D. T. Simionescu, and N. R. Vyavahare. Structural requirements for stabilization of vascular elastin by polyphenolic tannins. Biomaterials 27:3645–3651, 2006.Google Scholar
  69. 69.
    Isenburg, J. C., Ogle, M. F. Compositions for tissue stabilization. Google Patents, 2016.
  70. 70.
    Isenburg, J. C., D. T. Simionescu, B. C. Starcher, and N. R. Vyavahare. Elastin stabilization for treatment of abdominal aortic aneurysms. Circulation 115:1729–1737, 2007.Google Scholar
  71. 71.
    Isenburg, J. C., D. T. Simionescu, and N. R. Vyavahare. Elastin stabilization in cardiovascular implants: improved resistance to enzymatic degradation by treatment with tannic acid. Biomaterials 25:3293–3302, 2004.Google Scholar
  72. 72.
    Isenburg, J. C., D. T. Simionescu, and N. R. Vyavahare. Tannic acid treatment enhances biostability and reduces calcification of glutaraldehyde fixed aortic wall. Biomaterials 26:1237–1245, 2005.Google Scholar
  73. 73.
    Isenburg, J. C., Vyavahare, N. R., Ogle, M. F. Treatment of aneurysm with application of connective tissue stabilization agent in combination with a delivery vehicle. Google Patents, 2009.
  74. 74.
    Jablonowski, L. J., D. Conover, N. T. Teraphongphom, and M. A. Wheatley. Manipulating multifaceted microbubble shell composition to target both TRAIL-sensitive and resistant cells. J. Biomed. Mater. Res. A 106:1903–1915, 2018.Google Scholar
  75. 75.
    Jang, S. E., S. R. Hyam, J. J. Jeong, M. J. Han, and D. H. Kim. Penta-O-galloyl-beta-d-glucose ameliorates inflammation by inhibiting MyD88/NF-kappaB and MyD88/MAPK signalling pathways. Br. J. Pharmacol. 170:1078–1091, 2013.Google Scholar
  76. 76.
    Jeon, W. K., J. H. Lee, H. K. Kim, A. Y. Lee, S. O. Lee, Y. S. Kim, S. Y. Ryu, S. Y. Kim, Y. J. Lee, and B. S. Ko. Anti-platelet effects of bioactive compounds isolated from the bark of Rhus verniciflua Stokes. J. Ethnopharmacol. 106:62–69, 2006.Google Scholar
  77. 77.
    Jiamboonsri, P., P. Pithayanukul, R. Bavovada, J. Leanpolchareanchai, T. Yin, S. Gao, and M. Hu. Factors influencing oral bioavailability of thai mango seed kernel extract and its key phenolic principles. Molecules 20:21254–21273, 2015.Google Scholar
  78. 78.
    Kageyama-Yahara, N., Y. Suehiro, F. Maeda, S. Kageyama, J. Fukuoka, T. Katagiri, T. Yamamoto, and M. Kadowaki. Pentagalloylglucose down-regulates mast cell surface FcepsilonRI expression in vitro and in vivo. FEBS Lett. 584:111–118, 2010.Google Scholar
  79. 79.
    Kang, D. G., M. K. Moon, D. H. Choi, J. K. Lee, T. O. Kwon, and H. S. Lee. Vasodilatory and anti-inflammatory effects of the 1,2,3,4,6-penta-O-galloyl-beta-d-glucose (PGG) via a nitric oxide-cGMP pathway. Eur. J. Pharmacol. 524:111–119, 2005.Google Scholar
  80. 80.
    Kanoh, R., T. Hatano, H. Ito, T. Yoshida, and M. Akagi. Effects of tannins and related polyphenols on superoxide-induced histamine release from rat peritoneal mast cells. Phytomedicine 7:297–302, 2000.Google Scholar
  81. 81.
    Karrowni, W., S. Dughman, G. P. Hajj, and F. J. Miller, Jr. Statin therapy reduces growth of abdominal aortic aneurysms. J. Invest. Med. 59:1239–1243, 2011.Google Scholar
  82. 82.
    Kim, W., R. T. Gandhi, C. S. Pena, R. E. Herrera, M. B. Schernthaner, J. M. Acuna, V. N. Becerra, and B. T. Katzen. Influence of statin therapy on aneurysm sac regression after endovascular aortic repair. J. Vasc. Interv. Radiol. 28:35–43, 2017.Google Scholar
  83. 83.
    Kim, S. J., S. A. Sancheti, S. S. Sancheti, B. H. Um, S. M. Yu, and S. Y. Seo. Effect of 1,2,3,4,6-penta-O-galloyl-beta-d-glucose on elastase and hyaluronidase activities and its type II collagen expression. Acta Pol. Pharm. 67:145–150, 2010.Google Scholar
  84. 84.
    Kim, Y. H., M. Yoshimoto, K. Nakayama, S. Tanino, Y. Fujimura, K. Yamada, and H. Tachibana. Tannic acid, a higher galloylated pentagalloylglucose, suppresses antigen-specific IgE production by inhibiting varepsilon germline transcription induced by STAT6 activation. FEBS Open Bio. 3:341–345, 2013.Google Scholar
  85. 85.
    Kiss, A., B. Becsi, B. Kolozsvari, I. Komaromi, K. E. Kover, and F. Erdodi. Epigallocatechin-3-gallate and penta-O-galloyl-beta-d-glucose inhibit protein phosphatase-1. FEBS J. 280:612–626, 2013.Google Scholar
  86. 86.
    Kiss, A. K., A. Filipek, B. Zyzynska-Granica, and M. Naruszewicz. Effects of penta-O-galloyl-beta-d-glucose on human neutrophil function: significant down-regulation of L-selectin expression. Phytother. Res. 27:986–992, 2013.Google Scholar
  87. 87.
    Klibanov, A. L. Ligand-carrying gas-filled microbubbles: ultrasound contrast agents for targeted molecular imaging. Bioconjug. Chem. 16:9–17, 2005.Google Scholar
  88. 88.
    Kloster, B. O., L. Lund, and J. S. Lindholt. Inhibition of early AAA formation by aortic intraluminal pentagalloyl glucose (PGG) infusion in a novel porcine AAA model. Ann. Med. Surg. 7:65–70, 2016.Google Scholar
  89. 89.
    Kooiman, K., H. J. Vos, M. Versluis, and N. de Jong. Acoustic behavior of microbubbles and implications for drug delivery. Adv. Drug Deliv. Rev. 72:28–48, 2014.Google Scholar
  90. 90.
    Krook, M. A., and A. E. Hagerman. Stability of polyphenols epigallocatechin gallate and pentagalloyl glucose in a simulated digestive system. Food Res. Int. 49:112–116, 2012.Google Scholar
  91. 91.
    Kuo, P. T., T. P. Lin, L. C. Liu, C. H. Huang, J. K. Lin, J. Y. Kao, and T. D. Way. Penta-O-galloyl-beta-d-glucose suppresses prostate cancer bone metastasis by transcriptionally repressing EGF-induced MMP-9 expression. J. Agric. Food Chem. 57:3331–3339, 2009.Google Scholar
  92. 92.
    Larrosa, M., M. T. Garcia-Conesa, J. C. Espin, and F. A. Tomas-Barberan. Ellagitannins, ellagic acid and vascular health. Mol. Aspects Med. 31:513–539, 2010.Google Scholar
  93. 93.
    Lederle, F. A., G. R. Johnson, S. E. Wilson, E. P. Chute, F. N. Littooy, D. Bandyk, W. C. Krupski, G. W. Barone, C. W. Acher, and D. J. Ballard. Prevalence and associations of abdominal aortic aneurysm detected through screening. Ann. Intern. Med. 126:441, 1997.Google Scholar
  94. 94.
    Lee, H. J., N. J. Seo, S. J. Jeong, Y. Park, D. B. Jung, W. Koh, H. J. Lee, E. O. Lee, K. S. Ahn, K. S. Ahn, J. Lu, and S. H. Kim. Oral administration of penta-O-galloyl-beta-d-glucose suppresses triple-negative breast cancer xenograft growth and metastasis in strong association with JAK1-STAT3 inhibition. Carcinogenesis 32:804–811, 2011.Google Scholar
  95. 95.
    Lee, E. H., D. G. Song, J. Y. Lee, C. H. Pan, B. H. Um, and S. H. Jung. Inhibitory effect of the compounds isolated from Rhus verniciflua on aldose reductase and advanced glycation endproducts. Biol. Pharm. Bull. 31:1626–1630, 2008.Google Scholar
  96. 96.
    Lentacker, I., S. C. De Smedt, and N. N. Sanders. Drug loaded microbubble design for ultrasound triggered delivery. Soft Matter 5:2161–2170, 2009.Google Scholar
  97. 97.
    Li, L., A. A. Shaik, J. Zhang, K. Nhkata, L. Wang, Y. Zhang, C. Xing, S. H. Kim, and J. Lu. Preparation of penta-O-galloyl-beta-d-glucose from tannic acid and plasma pharmacokinetic analyses by liquid-liquid extraction and reverse-phase HPLC. J. Pharm. Biomed. Anal. 54:545–550, 2011.Google Scholar
  98. 98.
    Lin, T. C., F. L. Hsu, and J. T. Cheng. Antihypertensive activity of corilagin and chebulinic acid, tannins from lumnitzera-racemosa. J. Nat. Prod. 56:629–632, 1993.Google Scholar
  99. 99.
    Lindeman, J. H., B. A. Ashcroft, J. W. Beenakker, M. van Es, N. B. Koekkoek, F. A. Prins, J. F. Tielemans, H. Abdul-Hussien, R. A. Bank, and T. H. Oosterkamp. Distinct defects in collagen microarchitecture underlie vessel-wall failure in advanced abdominal aneurysms and aneurysms in Marfan syndrome. Proc. Natl. Acad. Sci. USA 107:862–865, 2010.Google Scholar
  100. 100.
    Liu, J. C., F. L. Hsu, J. C. Tsai, P. Chan, J. Y. Liu, G. N. Thomas, B. Tomlinson, M. Y. Lo, and J. Y. Lin. Antihypertensive effects of tannins isolated from traditional Chinese herbs as non-specific inhibitors of angiontensin converting enzyme. Life Sci. 73:1543–1555, 2003.Google Scholar
  101. 101.
    Lopez-de-Andres, A., I. Jimenez-Trujillo, R. Jimenez-Garcia, V. Hernandez-Barrera, J. M. de Miguel-Yanes, M. Mendez-Bailon, N. Perez-Farinos, M. A. Salinero-Fort, and P. Carrasco-Garrido. National trends in incidence and outcomes of abdominal aortic aneurysm among elderly type 2 diabetic and non-diabetic patients in Spain (2003–2012). Cardiovasc. Diabetol. 14:48, 2015.Google Scholar
  102. 102.
    Ma, C. X., X. Zhao, P. Wang, P. Jia, X. F. Zhao, C. N. Xiao, and X. H. Zheng. Metabolite characterization of penta-O-galloyl-beta-d-glucose in rat biofluids by HPLC-QTOF-MS. Chin. Herb. Med. 10:73–79, 2018.Google Scholar
  103. 103.
    Manach, C., A. Scalbert, C. Morand, C. Remesy, and L. Jimenez. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79:727–747, 2004.Google Scholar
  104. 104.
    Mao, X., C. Gu, D. Chen, B. Yu, and J. He. Oxidative stress-induced diseases and tea polyphenols. Oncotarget 8:81649–81661, 2017.Google Scholar
  105. 105.
    Martufi, G., E. S. Di Martino, C. H. Amon, S. C. Muluk, and E. A. Finol. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J. Biomech. Eng. 131:061015, 2009.Google Scholar
  106. 106.
    Meijer, C. A., T. Stijnen, M. N. Wasser, J. F. Hamming, J. H. van Bockel, J. H. Lindeman, and G. Pharmaceutical Aneurysm Stabilisation Trial Study. Doxycycline for stabilization of abdominal aortic aneurysms: a randomized trial. Ann. Intern. Med. 159:815–823, 2013.Google Scholar
  107. 107.
    Mendonca, P., E. Taka, D. Bauer, M. Cobourne-Duval, and K. F. Soliman. The attenuating effects of 1,2,3,4,6 penta-O-galloyl-beta-d-glucose on inflammatory cytokines release from activated BV-2 microglial cells. J. Neuroimmunol. 305:9–15, 2017.Google Scholar
  108. 108.
    Mercuri, J. J., S. Patnaik, G. Dion, S. S. Gill, J. Liao, and D. T. Simionescu. Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies. Tissue Eng. A 19:952–966, 2013.Google Scholar
  109. 109.
    Miyake, T., and R. Morishita. Pharmacological treatment of abdominal aortic aneurysm. Cardiovasc. Res. 83:436–443, 2009.Google Scholar
  110. 110.
    Mohamed, F., P. Marchettini, O. A. Stuart, and P. H. Sugarbaker. Pharmacokinetics and tissue distribution of intraperitoneal paclitaxel with different carrier solutions. Cancer Chemother. Pharmacol. 52:405–410, 2003.Google Scholar
  111. 111.
    Mohan, C. G., G. L. Viswanatha, G. Savinay, C. E. Rajendra, and P. D. Halemani. 1,2,3,4,6 penta-O-galloyl-beta-d-glucose, a bioactivity guided isolated compound from Mangifera indica inhibits 11beta-HSD-1 and ameliorates high fat diet-induced diabetes in C57BL/6 mice. Phytomedicine 20:417–426, 2013.Google Scholar
  112. 112.
    Moran, C. S., S. W. Seto, S. M. Krishna, S. Sharma, R. J. Jose, E. Biros, Y. Wang, S. K. Morton, and J. Golledge. Parenteral administration of factor Xa/IIa inhibitors limits experimental aortic aneurysm and atherosclerosis. Sci. Rep. 7:43079, 2017.Google Scholar
  113. 113.
    Moris, D., E. Mantonakis, E. Avgerinos, M. Makris, C. Bakoyiannis, E. Pikoulis, and S. Georgopoulos. Novel biomarkers of abdominal aortic aneurysm disease: identifying gaps and dispelling misperceptions. BioMed Res. Int. 2014:925840, 2014.Google Scholar
  114. 114.
    Moro, F., I. De Blasis, B. Virgilio, A. Di Legge, G. Rindi, L. Bonomo, M. Storto, and A. C. Testa. P27.02: first in human study using KDR-targeted microbubbles (BR55) ultrasound molecular imaging in ovarian masses. Ultrasound Obstet. Gynecol. 48:255, 2016.Google Scholar
  115. 115.
    Mosorin, M., J. Juvonen, F. Biancari, J. Satta, H. M. Surcel, M. Leinonen, P. Saikku, and T. Juvonen. Use of doxycycline to decrease the growth rate of abdominal aortic aneurysms: a randomized, double-blind, placebo-controlled pilot study. J. Vasc. Surg. 34:606–610, 2001.Google Scholar
  116. 116.
    Murphy, M. P. Safety and efficacy of allogeneic MSCs in promoting T-regulatory cells in patients with small abdominal aortic aneurysms., 2016.
  117. 117.
    Nesbitt, W. S., E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15:665–673, 2009.Google Scholar
  118. 118.
    Neveu, V., J. Perez-Jimenez, F. Vos, V. Crespy, L. du Chaffaut, L. Mennen, C. Knox, R. Eisner, J. Cruz, D. Wishart, and A. Scalbert. Phenol-explorer: an online comprehensive database on polyphenol contents in foods. Database 2010:bap024, 2010.Google Scholar
  119. 119.
    Nosoudi, N., A. Chowdhury, S. Siclari, S. Karamched, V. Parasaram, J. Parrish, P. Gerard, and N. Vyavahare. Reversal of vascular calcification and aneurysms in a rat model using dual targeted therapy with EDTA- and PGG-loaded nanoparticles. Theranostics 6:1975–1987, 2016.Google Scholar
  120. 120.
    Nosoudi, N., A. Chowdhury, S. Siclari, V. Parasaram, S. Karamched, and N. Vyavahare. Systemic delivery of nanoparticles loaded with pentagalloyl glucose protects elastic lamina and prevents abdominal aortic aneurysm in rats. J. Cardiovasc. Transl. Res. 9:445–455, 2016.Google Scholar
  121. 121.
    Oh, G. S., H. O. Pae, B. M. Choi, H. S. Lee, I. K. Kim, Y. G. Yun, J. D. Kim, and H. T. Chung. Penta-O-galloyl-beta-d-glucose inhibits phorbol myristate acetate-induced interleukin-8 [correction of intereukin-8] gene expression in human monocytic U937 cells through its inactivation of nuclear factor-kappaB. Int. Immunopharmacol. 4:377–386, 2004.Google Scholar
  122. 122.
    Paefgen, V., D. Doleschel, and F. Kiessling. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front. Pharmacol. 6:197, 2015.Google Scholar
  123. 123.
    Pan, M. H., S. Y. Lin-Shiau, C. T. Ho, J. H. Lin, and J. K. Lin. Suppression of lipopolysaccharide-induced nuclear factor-kappaB activity by theaflavin-3,3′-digallate from black tea and other polyphenols through down-regulation of IkappaB kinase activity in macrophages. Biochem. Pharmacol. 59:357–367, 2000.Google Scholar
  124. 124.
    Parasaram, V., N. Nosoudi, A. Chowdhury, and N. Vyavahare. Pentagalloyl glucose increases elastin deposition, decreases reactive oxygen species and matrix metalloproteinase activity in pulmonary fibroblasts under inflammatory conditions. Biochem. Biophys. Res. Commun. 499:24–29, 2018.Google Scholar
  125. 125.
    Parikh, S. A., R. Gomez, M. Thirugnanasambandam, S. S. Chauhan, V. De Oliveira, S. C. Muluk, M. K. Eskandari, and E. V. Finol. Decision tree based classification of abdominal aortic aneurysms using geometry quantification measures. Ann. Biomed. Eng. 2018. Scholar
  126. 126.
    Park, J. K., H. J. Cho, Y. Lim, Y. H. Cho, and C. H. Lee. Hypocholestrolemic effect of CJ90002 in hamsters: a potent inhibitor for squalene synthase from Paeonia moutan. J. Microbiol. Biotechnol. 12:222–227, 2002.Google Scholar
  127. 127.
    Park, E., N. H. Lee, J. S. Baik, and Y. Jee. Elaeocarpus sylvestris modulates gamma-ray-induced immunosuppression in mice: implications in radioprotection. Phytother. Res. 22:1046–1051, 2008.Google Scholar
  128. 128.
    Parkinson, F., S. Ferguson, P. Lewis, I. M. Williams, C. P. Twine, and N South East Wales Vascular. Rupture rates of untreated large abdominal aortic aneurysms in patients unfit for elective repair. J. Vasc. Surg. 61:1606–1612, 2015.Google Scholar
  129. 129.
    Pennel, T., G. Fercana, D. Bezuidenhout, A. Simionescu, T. H. Chuang, P. Zilla, and D. Simionescu. The performance of cross-linked acellular arterial scaffolds as vascular grafts; pre-clinical testing in direct and isolation loop circulatory models. Biomaterials 35:6311–6322, 2014.Google Scholar
  130. 130.
    Phillips, E. H., A. A. Yrineo, H. D. Schroeder, K. E. Wilson, J. X. Cheng, and C. J. Goergen. Morphological and biomechanical differences in the elastase and AngII apoE(−/−) rodent models of abdominal aortic aneurysms. BioMed Res. Int. 2015:413189, 2015.Google Scholar
  131. 131.
    Piao, M. J., K. A. Kang, R. Zhang, D. O. Ko, Z. H. Wang, K. H. Lee, W. Y. Chang, S. Chae, Y. Jee, T. Shin, J. W. Park, N. H. Lee, and J. W. Hyun. Antioxidant properties of 1,2,3,4,6-penta-O-galloyl-β-d-glucose from Elaeocarpus sylvestris var. ellipticus. Food Chem. 115:412–418, 2009.Google Scholar
  132. 132.
    Pintea, A., D. Rugină, and Z. Diaconeasa. 4-Pharmacologically active plant-derived natural products. In: Smart Nanoparticles for Biomedicine, edited by G. Ciofani. Amsterdam: Elsevier, 2018, pp. 49–64.Google Scholar
  133. 133.
    Pitt, W. G., G. A. Husseini, and B. J. Staples. Ultrasonic drug delivery—a general review. Exp. Opin. Drug Deliv. 1:37–56, 2004.Google Scholar
  134. 134.
    Prall, A. K., G. M. Longo, W. G. Mayhan, E. A. Waltke, B. Fleckten, R. W. Thompson, and B. T. Baxter. Doxycycline in patients with abdominal aortic aneurysms and in mice: comparison of serum levels and effect on aneurysm growth in mice. J. Vasc. Surg. 35:923–929, 2002.Google Scholar
  135. 135.
    Rader, D. J. High-density lipoproteins and atherosclerosis. Am. J. Cardiol. 90:62i–70i, 2002.Google Scholar
  136. 136.
    Ragheb, A. O., Ruane, P. H., and Biggs, D. P. Delivery of elastin-stabilizing compound within a body lumen. Google Patents, 2007.
  137. 137.
    Ramakrishnan, S., K. Dharmalingam, S. T. Panchanatham, and S. Palanivelu. Efficacy of tridham and 1,2,3,4,6-penta-O-galloyl-β-d-glucose in reversing lipid peroxidation levels and mitochondrial antioxidant status in 7,12-dimethylbenzeneanthracene (Dmba) induced breast cancer in Sprague–Dawley rats. Int. J. Pharm. Pharm. Sci. 8:288, 2016.Google Scholar
  138. 138.
    Ramaswamy, A. K., M. Hamilton, 2nd, R. V. Joshi, B. P. Kline, R. Li, P. Wang, and C. J. Goergen. Molecular imaging of experimental abdominal aortic aneurysms. Sci. World J. 2013:973150, 2013.Google Scholar
  139. 139.
    Raut, S., S. Chandra, J. Shum, C. B. Washington, S. C. Muluk, E. A. Finol, and J. F. Rodriguez. Biological, geometric and biomechanical factors influencing abdominal aortic aneurysm rupture risk: a comprehensive review. Recent Patents Med. Imaging 3:44–59, 2013.Google Scholar
  140. 140.
    Ren, Y., and X. Chen. Distribution, bioactivities and therapeutical potentials of pentagalloylglucopyranose. Curr. Bioact. Compd. 3:81–89, 2007.Google Scholar
  141. 141.
    Ren, Y., K. Himmeldirk, and X. Chen. Synthesis and structure-activity relationship study of antidiabetic penta-O-galloyl-d-glucopyranose and its analogues. J. Med. Chem. 49:2829–2837, 2006.Google Scholar
  142. 142.
    Ruggeri, Z. M., J. N. Orje, R. Habermann, A. B. Federici, and A. J. Reininger. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 108:1903–1910, 2006.Google Scholar
  143. 143.
    Ryan, S. M., G. Mantovani, X. Wang, D. M. Haddleton, and D. J. Brayden. Advances in PEGylation of important biotech molecules: delivery aspects. Exp. Opin. Drug Deliv. 5:371–383, 2008.Google Scholar
  144. 144.
    Safar, M. E., B. I. Levy, and H. Struijker-Boudier. Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation 107:2864–2869, 2003.Google Scholar
  145. 145.
    Salata, K., M. Syed, M. Hussain, N. Alsaif, S. Verma, and M. Al-Omran. The impact of statins on abdominal aortic aneurysm growth, rupture, and perioperative outcomes: a systematic review and meta-analysis. J. Vasc. Surg. 66:E66–E67, 2017.Google Scholar
  146. 146.
    Sanna, V., G. Lubinu, P. Madau, N. Pala, S. Nurra, A. Mariani, and M. Sechi. Polymeric nanoparticles encapsulating white tea extract for nutraceutical application. J. Agric. Food Chem. 63:2026–2032, 2015.Google Scholar
  147. 147.
    Sanna, V., A. M. Roggio, A. M. Posadino, A. Cossu, S. Marceddu, A. Mariani, V. Alzari, S. Uzzau, G. Pintus, and M. Sechi. Novel docetaxel-loaded nanoparticles based on poly(lactide-co-caprolactone) and poly(lactide-co-glycolide-co-caprolactone) for prostate cancer treatment: formulation, characterization, and cytotoxicity studies. Nanoscale Res. Lett. 6:260, 2011.Google Scholar
  148. 148.
    Schriefl, A. J., G. Zeindlinger, D. M. Pierce, P. Regitnig, and G. A. Holzapfel. Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries. J. R. Soc. Interface 9:1275–1286, 2012.Google Scholar
  149. 149.
    Schroff, P., C. M. Gamboa, R. W. Durant, A. Oikeh, J. S. Richman, and M. M. Safford. Vulnerabilities to Health disparities and statin use in the REGARDS (reasons for geographic and racial differences in stroke) study. J. Am. Heart Assoc. 6:e005449, 2017.Google Scholar
  150. 150.
    Shavandi, A., A. E. A. Bekhit, P. Saeedi, Z. Izadifar, A. A. Bekhit, and A. Khademhosseini. Polyphenol uses in biomaterials engineering. Biomaterials 167:91–106, 2018.Google Scholar
  151. 151.
    Shen, A. M. Subcutaneous delivery of protein therapeutics Rutgers University-Graduate School-New Brunswick, 2017.
  152. 152.
    Shimada, T. Salivary proteins as a defense against dietary tannins. J. Chem. Ecol. 32:1149–1163, 2006.Google Scholar
  153. 153.
    Shum, J., G. Martufi, E. Di Martino, C. B. Washington, J. Grisafi, S. C. Muluk, and E. A. Finol. Quantitative assessment of abdominal aortic aneurysm geometry. Ann. Biomed. Eng. 39:277–286, 2011.Google Scholar
  154. 154.
    Sierad, L. N., A. Simionescu, C. Albers, J. Chen, J. Maivelett, M. E. Tedder, J. Liao, and D. T. Simionescu. Design and testing of a pulsatile conditioning system for dynamic endothelialization of polyphenol-stabilized tissue engineered heart valves. Cardiovasc. Eng. Technol. 1:138–153, 2010.Google Scholar
  155. 155.
    Sillesen, H., N. Eldrup, R. Hultgren, J. Lindeman, K. Bredahl, M. Thompson, A. Wanhainen, U. Wingren, J. Swedenborg, and A. T. Investigators. Randomized clinical trial of mast cell inhibition in patients with a medium-sized abdominal aortic aneurysm. Br. J. Surg. 102:894–901, 2015.Google Scholar
  156. 156.
    Sinha, A., N. Nosoudi, and N. Vyavahare. Elasto-regenerative properties of polyphenols. Biochem. Biophys. Res. Commun. 444:205–211, 2014.Google Scholar
  157. 157.
    Sinha, A., A. Shaporev, N. Nosoudi, Y. Lei, A. Vertegel, S. Lessner, and N. Vyavahare. Nanoparticle targeting to diseased vasculature for imaging and therapy. Nanomedicine 10:1003–1012, 2014.Google Scholar
  158. 158.
    Sirsi, S., and M. Borden. Microbubble compositions, properties and biomedical applications. Bubble Sci. Eng. Technol. 1:3–17, 2009.Google Scholar
  159. 159.
    Sirsi, S. R., and M. A. Borden. State-of-the-art materials for ultrasound-triggered drug delivery. Adv. Drug Deliv. Rev. 72:3–14, 2014.Google Scholar
  160. 160.
    Sirsi, S. R., C. Fung, S. Garg, M. Y. Tianning, P. A. Mountford, and M. A. Borden. Lung surfactant microbubbles increase lipophilic drug payload for ultrasound-targeted delivery. Theranostics 3:409–419, 2013.Google Scholar
  161. 161.
    Skopec, M. M., A. E. Hagerman, and W. H. Karasov. Do salivary proline-rich proteins counteract dietary hydrolyzable tannin in laboratory rats? J. Chem. Ecol. 30:1679–1692, 2004.Google Scholar
  162. 162.
    Sorace, A. G., M. Korb, J. M. Warram, H. Umphrey, K. R. Zinn, E. Rosenthal, and K. Hoyt. Ultrasound-stimulated drug delivery for treatment of residual disease after incomplete resection of head and neck cancer. Ultrasound Med. Biol. 40:755–764, 2014.Google Scholar
  163. 163.
    Sugatani, J., N. Fukazawa, K. Ujihara, K. Yoshinari, I. Abe, H. Noguchi, and M. Miwa. Tea polyphenols inhibit acetyl-CoA:1-alkyl-<i>sn</i>-glycero-3-phosphocholine acetyltransferase (a key enzyme in platelet-activating factor biosynthesis) and platelet-activating factor-induced platelet aggregation. Int. Arch. Allergy Immunol. 134:17–28, 2004.Google Scholar
  164. 164.
    Swart, A. M., S. Burdett, J. Ledermann, P. Mook, and M. K. Parmar. Why i.p. therapy cannot yet be considered as a standard of care for the first-line treatment of ovarian cancer: a systematic review. Ann. Oncol. 19:688–695, 2008.Google Scholar
  165. 165.
    Sweeting, M. J., S. G. Thompson, L. C. Brown, J. T. Powell, and R. collaborators. Meta-analysis of individual patient data to examine factors affecting growth and rupture of small abdominal aortic aneurysms. Br. J. Surg. 99:655–665, 2012.Google Scholar
  166. 166.
    Takagi, H., H. Manabe, N. Kawai, S. N. Goto, and T. Umemoto. Serum high-density and low-density lipoprotein cholesterol is associated with abdominal aortic aneurysm presence: a systematic review and meta-analysis. Int. Angiol. 29:371–375, 2010.Google Scholar
  167. 167.
    Tam, H., W. Zhang, K. R. Feaver, N. Parchment, M. S. Sacks, and N. Vyavahare. A novel crosslinking method for improved tear resistance and biocompatibility of tissue based biomaterials. Biomaterials 66:83–91, 2015.Google Scholar
  168. 168.
    Tam, H., W. Zhang, D. Infante, N. Parchment, M. Sacks, and N. Vyavahare. Fixation of bovine pericardium-based tissue biomaterial with irreversible chemistry improves biochemical and biomechanical properties. J. Cardiovasc. Transl. Res. 10:194–205, 2017.Google Scholar
  169. 169.
    Tanios, F., M. W. Gee, J. Pelisek, S. Kehl, J. Biehler, V. Grabher-Meier, W. A. Wall, H. H. Eckstein, and C. Reeps. Interaction of biomechanics with extracellular matrix components in abdominal aortic aneurysm wall. Eur. J. Vasc. Endovasc. Surg. 50:167–174, 2015.Google Scholar
  170. 170.
    Tedder, M. E., J. Liao, B. Weed, C. Stabler, H. Zhang, A. Simionescu, and D. T. Simionescu. Stabilized collagen scaffolds for heart valve tissue engineering. Tissue Eng. A 15:1257–1268, 2009.Google Scholar
  171. 171.
    Tedder, M. E., A. Simionescu, J. Chen, J. Liao, and D. T. Simionescu. Assembly and testing of stem cell-seeded layered collagen constructs for heart valve tissue engineering. Tissue Eng. A 17:25–36, 2011.Google Scholar
  172. 172.
    Thirugnanasambandam, M., D. Simionescu, G. P. Escobar, E. A. Sprague, B. Goins, G. Clarke, H. Han, K. Amezcua, O. Adeyinka, C. Goergen, and E. A. Finol. The effect of pentagalloyl glucose on the wall mechanics and inflammatory activity of rat abdominal aortic aneurysms. J. Biomech. Eng. 140:8, 2018.Google Scholar
  173. 173.
    Thomasset, S. C., D. P. Berry, G. Garcea, T. Marczylo, W. P. Steward, and A. J. Gescher. Dietary polyphenolic phytochemicals–promising cancer chemopreventive agents in humans? A review of their clinical properties. Int. J. Cancer 120:451–458, 2007.Google Scholar
  174. 174.
    Thompson, R. W., and B. T. Baxter. MMP inhibition in abdominal aortic aneurysms. Rationale for a prospective randomized clinical trial. Ann N Y Acad Sci 878:159–178, 1999.Google Scholar
  175. 175.
    Toda, M., J. Kawabata, and T. Kasai. Inhibitory effects of ellagi- and gallotannins on rat intestinal alpha-glucosidase complexes. Biosci. Biotechnol. Biochem. 65:542–547, 2001.Google Scholar
  176. 176.
    Torres-Leon, C., J. Ventura-Sobrevilla, L. Serna-Cock, J. A. Ascacio-Valdes, J. Contreras-Esquivel, and C. N. Aguilar. Pentagalloylglucose (PGG): a valuable phenolic compound with functional properties. J. Funct. Foods 37:176–189, 2017.Google Scholar
  177. 177.
    Tripi, D. R., and N. R. Vyavahare. Neomycin and pentagalloyl glucose enhanced cross-linking for elastin and glycosaminoglycans preservation in bioprosthetic heart valves. J. Biomater. Appl. 28:757–766, 2014.Google Scholar
  178. 178.
    Tu, Z., W. Gong, Y. Zhang, Y. Feng, Y. Liu, and C. Tu. Inhibition of rabies virus by 1,2,3,4,6-penta-O-galloyl-beta-d-glucose involves mTOR-dependent autophagy. Viruses 10:201, 2018.Google Scholar
  179. 179.
    Vallianou, N. G., A. Kostantinou, M. Kougias, and C. Kazazis. Statins and cancer. Anti-cancer Agents Med. Chem. 14:706–712, 2014.Google Scholar
  180. 180.
    Venancio, V. P., H. Kim, M. A. Sirven, C. D. Tekwe, G. Honvoh, S. T. Talcott, and S. Mertens-Talcott. Polyphenol-rich Mango (Mangifera indica L.) Ameliorate Functional Constipation Symptoms in Humans beyond Equivalent Amount of Fiber. Mol. Nutr. Food Res. 62:1701034, 2018.Google Scholar
  181. 181.
    Vijaynagar, B., M. J. Bown, R. D. Sayers, and E. Choke. Potential role for anti-angiogenic therapy in abdominal aortic aneurysms. Eur. J. Clin. Invest. 43:758–765, 2013.Google Scholar
  182. 182.
    Villanueva, F. S., W. R. Wagner, M. A. Vannan, and J. Narula. Targeted ultrasound imaging using microbubbles. Cardiol. Clin. 22:283–298, 2004.Google Scholar
  183. 183.
    Viswanatha, G. L., H. Shylaja, and C. G. Mohan. Alleviation of transient global ischemia/reperfusion-induced brain injury in rats with 1,2,3,4,6-penta-O-galloyl-beta-d-glucopyranose isolated from Mangifera indica. Eur. J. Pharmacol. 720:286–293, 2013.Google Scholar
  184. 184.
    Vyavahare, N. R., Isenburg, J. C., Simionescu, D. T. Elastin stabilization of connective tissue. Google Patents, 2007.
  185. 185.
    Wang, X., A. Searle, Y. Chen, and K. Peter. Targeted microbubbles for the delivery of MicroRNA-126: treatment and prevention of abdominal aortic aneurysm. Heart Lung Circul. 26:S63, 2017.Google Scholar
  186. 186.
    Wang, G. W., J. Song, X. Tan, Y. Zhou, J. Chen, R. Li, L. Qiao, J. Song, C. Wang, and L. Zhang. Structural composition of components of geoherb Moutan Cortex contributes to anti-diabetic nephropathy activity. Oncotarget 2018. Scholar
  187. 187.
    Wanhainen A. The efficacy of ticagrelor on abdominal aortic aneurysm expansion.
  188. 188.
    Westenburg, H. E., K. J. Lee, S. K. Lee, H. H. Fong, R. B. van Breemen, J. M. Pezzuto, and A. D. Kinghorn. Activity-guided isolation of antioxidative constituents of Cotinus coggygria. J. Nat. Prod. 63:1696–1698, 2000.Google Scholar
  189. 189.
    Whitlock, M. C., and W. G. Hundley. Noninvasive imaging of flow and vascular function in disease of the aorta. JACC Cardiovasc. Imaging 8:1094–1106, 2015.Google Scholar
  190. 190.
    Wolinsky, H., and S. Glagov. A lamellar unit of aortic medial structure and function in mammals. Circul. Res. 20:99–111, 1967.Google Scholar
  191. 191.
    Wroblewski, K., R. Muhandiram, A. Chakrabartty, and A. Bennick. The molecular interaction of human salivary histatins with polyphenolic compounds. Eur. J. Biochem. 268:4384–4397, 2001.Google Scholar
  192. 192.
    Wu, J., and X. Ding. Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats. J. Agric. Food Chem. 49:501–506, 2001.Google Scholar
  193. 193.
    Xie, P., L. Cui, Y. Shan, and W. Y. Kang. antithrombotic effect and mechanism of radix paeoniae rubra. BioMed Res. Int. 2017:9475074, 2017.Google Scholar
  194. 194.
    Xiong, F. Y., Nirupama, S., Sirsi, S. R., Lacko, A., and Hoyt, K. Ultrasound-stimulated drug delivery of reconstituted high-density lipoprotein nanoparticles: Effects of drug concentration on tumor uptake. 2017 IEEE International Ultrasonics Symposium (Ius), pp. 1–4, 2017.Google Scholar
  195. 195.
    Xiong, J., Z. Wu, C. Chen, Y. Wei, and W. Guo. Association between diabetes and prevalence and growth rate of abdominal aortic aneurysms: a meta-analysis. Int. J. Cardiol. 221:484–495, 2016.Google Scholar
  196. 196.
    Yeo, Y., T. Ito, E. Bellas, C. B. Highley, R. Marini, and D. S. Kohane. In situ cross-linkable hyaluronan hydrogels containing polymeric nanoparticles for preventing postsurgical adhesions. Ann. Surg. 245:819–824, 2007.Google Scholar
  197. 197.
    Yrineo, A. A., A. R. Adelsperger, A. C. Durkes, M. R. Distasi, S. L. Voytik-Harbin, M. P. Murphy, and C. J. Goergen. Murine ultrasound-guided transabdominal para-aortic injections of self-assembling type I collagen oligomers. J. Control Release 249:53–62, 2017.Google Scholar
  198. 198.
    Yuan, B., and J. Rychak. Tumor functional and molecular imaging utilizing ultrasound and ultrasound-mediated optical techniques. Am. J. Pathol. 182:305–311, 2013.Google Scholar
  199. 199.
    Zhang, J., L. Li, S. H. Kim, A. E. Hagerman, and J Lu Anti-cancer. anti-diabetic and other pharmacologic and biological activities of penta-galloyl-glucose. Pharm. Res. 26:2066–2080, 2009.Google Scholar
  200. 200.
    Zhao, W., V. Haller, and A. Ritsch. The polyphenol PGG enhances expression of SR-BI and ABCA1 in J774 and THP-1 macrophages. Atherosclerosis 242:611–617, 2015.Google Scholar
  201. 201.
    Zou, L. Q., S. F. Peng, W. Liu, L. Gan, W. L. Liu, R. H. Liang, C. M. Liu, J. Niu, Y. L. Cao, Z. Liu, and X. Chen. Improved in vitro digestion stability of (-)-epigallocatechin gallate through nanoliposome encapsulation. Food Res. Int. 64:492–499, 2014.Google Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Vascular Biomechanics and Biofluids Laboratory, Department of Mechanical EngineeringThe University of Texas at San AntonioSan AntonioUSA
  2. 2.Department of BioengineeringClemson UniversityClemsonUSA
  3. 3.Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA
  4. 4.Department of BioengineeringUniversity of Texas at DallasRichardsonUSA
  5. 5.Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations