Annals of Biomedical Engineering

, Volume 47, Issue 2, pp 646–658 | Cite as

Quantifying Movement in Preterm Infants Using Photoplethysmography

  • Ian Zuzarte
  • Premananda Indic
  • Dagmar Sternad
  • David PaydarfarEmail author


Long-term recordings of movement in preterm infants might reveal important clinical information. However, measurement of movement is limited because of time-consuming and subjective analysis of video or reluctance to attach additional sensors to the infant. We evaluated whether photoplethysmogram (PPG), routinely used for oximetry in preterm infants in the neonatal intensive care unit (NICU), can provide reliable long-term measurements of movement. In 18 infants [mean post-conceptional age (PCA) 31.10 weeks, range 29–34.29 weeks], we designed and tested a wavelet-based algorithm that detects movement signals from the PPG. The algorithm’s performance was optimized relative to subjective assessments of movement using video and accelerometers attached to two limbs and force sensors embedded within the mattress (five infants, three raters). We then applied the optimized algorithm to infants receiving routine care in the NICU without additional sensors. The algorithm revealed a decline in brief movements (< 5 s) with increasing PCA (13 infants, r = − 0.87, p < 0.001, PCA range 27.3–33.9 weeks). Our findings suggest that quantitative relationships between motor activity and clinical outcomes in preterm infants can be studied using routine photoplethysmography.


Continuous wavelet transform Movement detection Motor development Preterm movement Photoplethysmography 



The authors thank Courtney Temple and Alan Gee for data collection, Adriell Louis and Hannah Taylor for data annotation; the NICU Staff and Physicians for subject recruitment, and James Niemi and his team at the Wyss Institute for constructing the movement sensor mattress. This work was supported by NSF SCH Grant #1664815, NIH Grants R01-GM104987 and R21-HD089731, and the Wyss Institute at Harvard University.


  1. 1.
    Aarnoudse-Moens, C. S. H., N. Weisglas-Kuperus, J. B. van Goudoever, and J. Oosterlaan. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics 124:717–728, 2009.CrossRefGoogle Scholar
  2. 2.
    Barker, S. J., and N. K. Shah. The effects of motion on the performance of pulse oximeters in volunteers. Anesthesiology 86:101–108, 1997.CrossRefGoogle Scholar
  3. 3.
    Bernhardt, I., M. Marbacher, R. Hilfiker, and L. Radlinger. Inter- and intra-observer agreement of Prechtl’s method on the qualitative assessment of general movements in preterm, term and young infants. Early Hum. Dev. 87:633–639, 2011.CrossRefGoogle Scholar
  4. 4.
    Bickler, P. E., J. R. Feiner, and J. W. Severinghaus. Effects of skin pigmentation on pulse oximeter accuracy at low saturation. Anesthesiology 102:715–719, 2005.CrossRefGoogle Scholar
  5. 5.
    Bruggink, J. L. M., K. N. Van Braeckel, and A. F. Bos. The early motor repertoire of children born preterm is associated with intelligence at school age. Pediatrics 125:e1356–e1363, 2010.CrossRefGoogle Scholar
  6. 6.
    Chan, G. S. H., A. Fazalbhoy, I. Birznieks, V. G. Macefield, P. M. Middleton, and N. H. Lovell. Spontaneous fluctuations in the peripheral photoplethysmographic waveform: roles of arterial pressure and muscle sympathetic nerve activity. Am. J. Physiol. Heart Circ. Physiol. 302:H826–H836, 2012.CrossRefGoogle Scholar
  7. 7.
    Chong, J. W., D. K. Dao, S. M. A. Salehizadeh, D. D. McManus, C. E. Darling, K. H. Chon, Y. Mendelson, and . Photoplethysmograph signal reconstruction based on a novel hybrid motion artifact detection–reduction approach. Part I: motion and noise artifact detection. Ann. Biomed. Eng. 42:2238–2250, 2014.CrossRefGoogle Scholar
  8. 8.
    Couceiro, R., P. Carvalho, R. P. Paiva, J. Henriques, and J. Muehlsteff. Detection of motion artifact patterns in photoplethysmographic signals based on time and period domain analysis. Physiol. Meas. 35:2369–2388, 2014.CrossRefGoogle Scholar
  9. 9.
    Fukumoto, M., N. Mochizuki, M. Takeishi, Y. Nomura, and M. Segawa. Studies of body movements during night sleep in infancy. Brain Dev. 3:37–43, 1981.CrossRefGoogle Scholar
  10. 10.
    Hadders-Algra, M., K. R. Heineman, A. F. Bos, and K. J. Middelburg. The assessment of minor neurological dysfunction in infancy using the Touwen Infant Neurological Examination: strengths and limitations. Dev. Med. Child Neurol. 52:87–92, 2010.CrossRefGoogle Scholar
  11. 11.
    Hayes, M. J., L. S. Plante, B. A. Fielding, S. P. Kumar, and M. Delivoria-Papadopoulos. Functional analysis of spontaneous movements in preterm infants. Dev. Psychobiol. 27:271–287, 1994.CrossRefGoogle Scholar
  12. 12.
    Holditch-Davis, D., D. H. Brandon, and T. Schwartz. Development of behaviors in preterm infants: relation to sleeping and waking. Nurs. Res. 52:307–317, 2003.CrossRefGoogle Scholar
  13. 13.
    Krägeloh-Mann, I., and C. Cans. Cerebral palsy update. Brain Dev. 31:537–544, 2009.CrossRefGoogle Scholar
  14. 14.
    Krishnan, R., B. B. Natarajan, and S. Warren. Two-stage approach for detection and reduction of motion artifacts in photoplethysmographic data. IEEE Trans. Biomed. Eng. 57:1867–1876, 2010.CrossRefGoogle Scholar
  15. 15.
    Kuzniewicz, M. W., S. Wi, Y. Qian, E. M. Walsh, M. A. Armstrong, and L. A. Croen. Prevalence and neonatal factors associated with autism spectrum disorders in preterm infants. J. Pediatr. 164:20–25, 2014.CrossRefGoogle Scholar
  16. 16.
    Mathew, O. P., C. K. Thoppil, and M. Belan. Motor activity and apnea in preterm infants. Is there a causal relationship? Am. Rev. Respir. Dis. 144:842–844, 1991.CrossRefGoogle Scholar
  17. 17.
    McGowan, J. E., F. A. Alderdice, V. A. Holmes, and L. Johnston. Early childhood development of late-preterm infants: a systematic review. Pediatrics 127:1111–1124, 2011.CrossRefGoogle Scholar
  18. 18.
    Moortel, I. D., S. A. Munday, and A. W. Hood. Wavelet Analysis: the effect of varying basic wavelet parameters. Sol. Phys. 222:203–228, 2004.CrossRefGoogle Scholar
  19. 19.
    Munro, B. H. Statistical Methods for Health Care Research. Philadelphia: Lippincott Williams and Wilkins, 2005.Google Scholar
  20. 20.
    Poets, C. F., and V. A. Stebbens. Detection of movement artifact in recorded pulse oximeter saturation. Eur. J. Pediatr. 156:808–811, 1997.CrossRefGoogle Scholar
  21. 21.
    Selvaraj, N., Y. Mendelson, K. H. Shelley, D. G. Silverman, and K. H. Chon. Statistical approach for the detection of motion/noise artifacts in photoplethysmogram. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011:4972–4975, 2011.Google Scholar
  22. 22.
    Shelley, K., and S. Shelley. Pulse oximeter waveform: photoelectric plethysmography. In: Clinical Monitoring, edited by C. Lake, R. Hines, and C. Blitt. Philadelphia: WB Saunders Company, 2001, pp. 420–428.Google Scholar
  23. 23.
    Shrout, P. E., and J. L. Fleiss. Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86:420–428, 1979.CrossRefGoogle Scholar
  24. 24.
    Tobin, R. M., J. A. Pologe, and P. B. Batchelder. A characterization of motion affecting pulse oximetry in 350 patients. Anesth. Analg. 94:S54–S61, 2002.Google Scholar
  25. 25.
    Torrence, C., and G. P. Compo. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79:61–78, 1998.CrossRefGoogle Scholar
  26. 26.
    Williamson, J. R., D. W. Bliss, D. W. Browne, P. Indic, E. Bloch-Salisbury, and D. Paydarfar. Individualized apnea prediction in preterm infants using cardio-respiratory and movement signals. 2013.
  27. 27.
    Zuzarte, I., P. Indic, B. Barton, D. Paydarfar, F. Bednarek, and E. Bloch-Salisbury. Vibrotactile stimulation: a non-pharmacological intervention for opioid-exposed newborns. PLoS ONE 2017. Scholar
  28. 28.
    Zuzarte, I., C. Temple, P. Indic, and D. Paydarfar. Transforming artifact to signal: a wavelet-based algorithm for quantifying neonatal movement. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014:5466–5469, 2014.Google Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Ian Zuzarte
    • 1
  • Premananda Indic
    • 2
  • Dagmar Sternad
    • 3
  • David Paydarfar
    • 4
    Email author
  1. 1.Department of BioengineeringNortheastern UniversityBostonUSA
  2. 2.Department of Electrical EngineeringUniversity of TexasTylerUSA
  3. 3.Departments of Biology, Electrical and Computer Engineering, and PhysicsNortheastern UniversityBostonUSA
  4. 4.Department of Neurology, Dell Medical School, and Institute for Computational Engineering and SciencesThe University of TexasAustinUSA

Personalised recommendations