Annals of Biomedical Engineering

, Volume 47, Issue 1, pp 202–212 | Cite as

Biomechanical Analysis of Porcine Cartilage Elasticity

  • Alexa W. Hudnut
  • Nicholas A. Trasolini
  • George F. Rick HatchIII
  • Andrea M. ArmaniEmail author


Grafting of tissue-engineered cartilage to joints with osteoarthritis has the potential to supersede arthroplasty as the standard of care. However, in order to support the development of functional tissue engineering methods, the subfailure biomechanics of the individual cartilage types that comprise joints must be determined. Current methods for analyzing tissues are based on imaging and are therefore unable to profile the strain dependence of mechanical behaviors within different cartilage types. Recently, an analysis technique based on Optical Fiber Polarimetric Elastography (OFPE) has overcome these challenges. OFPE has been used to characterize the different mechanical behaviors of a range of unprocessed biomaterials and tissues. In the present work, this technique is used to characterize the biomechanics of both articular cartilage and meniscal fibrocartilage within a porcine knee. OFPE testing of the tissue is conducted over a range of physiological loading and unloading values. These results demonstrate the distinctive mechanics of each cartilage type. Due to their different locations within the knee, each cartilage type exhibits distinctly unique biomechanical behavior. Based on the results of OFPE, we correlate the specific buckling, delamination, and bridging events to maxima and minima along the loading and unloading curves. This provides unprecedented detail with regard to the subfailure biomechanics. This information is integral to the design of the next generation of tissue-engineered constructs. Therefore, OFPE will be used across multiple disciplines to rapidly determine the mechanical behavior of tissue-engineered constructs to support functional tissue engineering efforts.


Polarimetry Medical optics instrumentation Nondestructive testing Elastography Cartilage Biomechanics 



The authors thank R.A. Arboleda, D. Chen, D. Cummins, N. Katkhouda, A. Kovach, S. Liu, S. Mumenthaler, and V. Sun. This work was supported by the Office of Naval Research [N00014-17-2270] and the A. E. Mann Graduate Research Fellowship. The study was conducted at the University of Southern California under Department of Animal Resource Tissue Request Form 10843.

Conflict of interest

The Optical Fiber Polarimetric Elastography (OFPE) instrument used in this work is patented by A.M. Armani, A. W. Hudnut, and their institution (US Patent 9791333).


  1. 1.
    Abdelgaied, A., M. Stanley, M. Galfe, H. Berry, E. Ingham, and J. Fisher. Comparison of the biomechanical tensile and compressive properties of decellularised and natural porcine meniscus. J. Biomech. 48:1389–1396, 2015.CrossRefGoogle Scholar
  2. 2.
    Ambroziński, Ł., S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell. Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity. Sci. Rep. 6:38967, 2016.CrossRefGoogle Scholar
  3. 3.
    Armiento, A. R., M. J. Stoddart, M. Alini, and D. Eglin. Biomaterials for articular cartilage tissue engineering: learning from biology. Acta Biomater. 65:1–20, 2018.CrossRefGoogle Scholar
  4. 4.
    Ateshian, G. A., M. P. Rosenwasser, and V. C. Mow. Curvature characteristics and congruence of the thumb carpometacarpal joint: differences between female and male joints. J. Biomech. 25:591–607, 1992.CrossRefGoogle Scholar
  5. 5.
    Athanasiou, K. A., M. P. Rosenwasser, J. A. Buckwalter, T. I. Malinin, and V. C. Mow. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J. Orthop. Res. 9:330–340, 1991.CrossRefGoogle Scholar
  6. 6.
    Bate-Smith, E. C., and J. R. Bendall. Factors determining the time course of rigor mortis. J. Physiol. 110:47–65, 1949.CrossRefGoogle Scholar
  7. 7.
    Bennett, L. D., and J. C. Buckland-Wright. Meniscal and articular cartilage changes in knee osteoarthritis: a cross-sectional double-contrast macroradiographic study. Rheumatology 41:917–923, 2002.CrossRefGoogle Scholar
  8. 8.
    Buckley, M. R., J. P. Gleghorn, L. J. Bonassar, and I. Cohen. Mapping the depth dependence of shear properties in articular cartilage. J. Biomech. 41:2430–2437, 2008.CrossRefGoogle Scholar
  9. 9.
    Butcher, D. T., T. Alliston, and V. M. Weaver. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9:108–122, 2009.CrossRefGoogle Scholar
  10. 10.
    Butler, D. L., S. A. Goldstein, and F. Guilak. Functional tissue engineering: the role of biomechanics. J. Biomech. Eng. Trans. ASME 122:570–575, 2000.CrossRefGoogle Scholar
  11. 11.
    Daniel, I. M., E. E. Gdoutos, K.-A. Wang, and J. L. Abot. Failure modes of composite sandwich beams. Int. J. Damage Mech. 11:309–334, 2002.CrossRefGoogle Scholar
  12. 12.
    Fan, H., L. Yang, F. Sun, and D. Fang. Compression and bending performances of carbon fiber reinforced lattice-core sandwich composites. Composites A 52:118–125, 2013.CrossRefGoogle Scholar
  13. 13.
    Fisher, M. B., E. A. Henning, N. B. Söegaard, G. R. Dodge, D. R. Steinberg, and R. L. Mauck. Maximizing cartilage formation and integration via a trajectory-based tissue engineering approach. Biomaterials 35:2140–2148, 2014.CrossRefGoogle Scholar
  14. 14.
    Fox, Alice J. S., A. Bedi, and S. A. Rodeo. The Basic Science of Human Knee Menisci: structure, Composition, and Function’. Sports Health 4:340–351, 2012.CrossRefGoogle Scholar
  15. 15.
    Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1981.CrossRefGoogle Scholar
  16. 16.
    Guterl, C. C., T. R. Gardner, V. Rajan, C. S. Ahmad, C. T. Hung, and G. A. Ateshian. Two-dimensional strain fields on the cross-section of the human patellofemoral joint under physiological loading. J. Biomech. 42:1275–1281, 2009.CrossRefGoogle Scholar
  17. 17.
    Harrison, M. C., and A. M. Armani. Portable polarimetric fiber stress sensor system for visco-elastic and biomimetic material analysis. Appl. Phys. Lett. 106:191105, 2015.CrossRefGoogle Scholar
  18. 18.
    Hori, R. Y., and L. F. Mockros. Indentation tests of human articular cartilage. J. Biomech. 9:259–268, 1976.CrossRefGoogle Scholar
  19. 19.
    Hudnut, A. W., and A. M. Armani. High-resolution analysis of the mechanical behavior of tissue. Appl. Phys. Lett. 110:243701, 2017.CrossRefGoogle Scholar
  20. 20.
    Hudnut, A. W., B. Babaei, S. Liu, B. K. Larson, S. M. Mumenthaler, and A. M. Armani. Characterization of the mechanical properties of resected porcine organ tissue using optical fiber photoelastic polarimetry. Biomed. Opt. Express 8:4663–4670, 2017.CrossRefGoogle Scholar
  21. 21.
    Hudnut, A. W., L. Lash-Rosenberg, A. Xin, J. A. Leal Doblado, C. Zurita-Lopez, Q. Wang, and A. M. Armani. Role of extracellular matrix in the biomechanical behavior of pancreatic tissue. ACS Biomater. Sci. Eng. 4(5):1916–1923, 2018.Google Scholar
  22. 22.
    Jiang, Y., and Q. Wang. Highly-stretchable 3D-architected mechanical metamaterials. Sci. Rep. 6:34147, 2016.CrossRefGoogle Scholar
  23. 23.
    Joseph, E. Petrzelka, and E. Hardt David. Static load-displacement behavior of PDMS microfeatures for soft lithography. J. Micromech. Microeng. 22:075015, 2012.CrossRefGoogle Scholar
  24. 24.
    Kuo, C. K., W.-J. Li, R. L. Mauck, and R. S. Tuan. Cartilage tissue engineering: its potential and uses. Curr. Opin. Rheumatol. 18:64–73, 2006.CrossRefGoogle Scholar
  25. 25.
    Lai, J. H., and M. E. Levenston. Meniscus and cartilage exhibit distinct intra-tissue strain distributions under unconfined compression’. Osteoarthritis Cartilage 18:1291–1299, 2010.CrossRefGoogle Scholar
  26. 26.
    Li, Q., Q. Feini, B. Han, C. Wang, H. Li, R. L. Mauck, and L. Han. Micromechanical anisotropy and heterogeneity of the meniscus extracellular matrix. Acta Biomater. 54:356–366, 2017.CrossRefGoogle Scholar
  27. 27.
    Malekipour, F., C. Whitton, D. Oetomo, and P. V. S. Lee. Shock absorbing ability of articular cartilage and subchondral bone under impact compression. J. Mech. Behav. Biomed. Mater. 26:127–135, 2013.CrossRefGoogle Scholar
  28. 28.
    Mow, V. C., A. Ratcliffe, and A. Robin Poole. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13:67–97, 1992.CrossRefGoogle Scholar
  29. 29.
    Mow, V. C., C. C. Wang, and C. T. Hung. The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage. Osteoarthritis Cartilage 7:41–58, 1999.CrossRefGoogle Scholar
  30. 30.
    O’Brien, F. J. Biomaterials & scaffolds for tissue engineering. Mater. Today 14:88–95, 2011.CrossRefGoogle Scholar
  31. 31.
    Segal, N. A., M. C. Nevitt, J. A. Lynch, J. Niu, J. C. Torner, and A. Guermazi. Diagnostic performance of 3D standing CT imaging for detection of knee osteoarthritis features. Phys. Sportsmed. 43:213–220, 2015.CrossRefGoogle Scholar
  32. 32.
    Shirazi, R., A. Shirazi-Adl, and M. Hurtig. Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. J. Biomech. 41:3340–3348, 2008.CrossRefGoogle Scholar
  33. 33.
    Sun, M. H., H. H. He, N. Zeng, E. Du, Y. H. Guo, S. X. Liu, J. Wu, Y. H. He, and H. Ma. Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters. Biomed. Opt. Express 5:4223–4234, 2014.CrossRefGoogle Scholar
  34. 34.
    Zhu, C. Mechanochemitry: a molecular biomechanics view of mechanosensing. Ann. Biomed. Eng. 42:388–404, 2014.CrossRefGoogle Scholar
  35. 35.
    Zimmermann, E. A., B. Busse, and R. O. Ritchie. The fracture mechanics of human bone: influence of disease and treatment. Bonekey Rep. 4:743, 2015.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Alexa W. Hudnut
    • 1
  • Nicholas A. Trasolini
    • 2
  • George F. Rick HatchIII
    • 2
  • Andrea M. Armani
    • 1
    • 3
    Email author
  1. 1.Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Orthopedic SurgeryUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Mork Family Department of Chemical Engineering and Material ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations