Annals of Biomedical Engineering

, Volume 47, Issue 1, pp 97–112 | Cite as

A Non-Invasive Material Characterization Framework for Bioprosthetic Heart Valves

  • Mostafa Abbasi
  • Mohammed S. Barakat
  • Danny Dvir
  • Ali N. AzadaniEmail author


Computational modeling and simulation has become more common in design and development of bioprosthetic heart valves. To have a reliable computational model, considering accurate mechanical properties of biological soft tissue is one of the most important steps. The goal of this study was to present a non-invasive material characterization framework to determine mechanical propertied of soft tissue employed in bioprosthetic heart valves. Using integrated experimental methods (i.e., digital image correlation measurements and hemodynamic testing in a pulse duplicator system) and numerical methods (i.e., finite element modeling and optimization), three-dimensional anisotropic mechanical properties of leaflets used in two commercially available transcatheter aortic valves (i.e., Edwards SAPIEN 3 and Medtronic CoreValve) were characterized and compared to that of a commonly used and well-examined surgical bioprosthesis (i.e., Carpentier-Edwards PERIMOUNT Magna aortic heart valve). The results of the simulations showed that the highest stress value during one cardiac cycle was at the peak of systole in the three bioprostheses. In addition, in the diastole, the peak of maximum in-plane principal stress was 0.98, 0.96, and 2.95 MPa for the PERIMOUNT Magna, CoreValve, and SAPIEN 3, respectively. Considering leaflet stress distributions, there might be a difference in the long-term durability of different TAV models.


Inverse finite element simulation Bioprosthetic heart valves Three-dimensional anisotropic mechanical properties Optimization Fung constitutive model Holzapfel–Gasser–Ogden constitutive model Carpentier-Edwards PERIMOUNT Magna Edwards SAPIEN 3 Medtronic CoreValve 



This work was supported partially by the American Heart Association Scientist Development Grant (AHA16SDG30920009) and by graduate scholarship from Jazan University.

Supplementary material

10439_2018_2129_MOESM1_ESM.tif (114 kb)
Supplementary material 1 Pressure curves acquired from the in vitro DIC tests (TIFF 114 kb).
10439_2018_2129_MOESM2_ESM.tif (66.4 mb)
Supplementary material 2 Pressure and flow waveforms of the three bioprosthetic heart valves obtained from in vitro testing in the pulse duplicator system (TIFF 67952 kb).
10439_2018_2129_MOESM3_ESM.tif (1.4 mb)
Supplementary material 3 Examples of degenerated bioprostheses. A, Carpentier-Edwards Perimount valve: leaflet tear. B, Carpentier-Edwards Magna Ease valve: leaflet calcification. C, Engager THV (Medtronic): leaflet restriction and calcification. D, Carpentier-Edwards Perimount valve: leaflet tear (ventricular side). Reprinted with permission from Dvir et al.15 (TIFF 1386 kb).


  1. 1.
    Abbasi, M., and A. N. Azadani. Leaflet stress and strain distributions following incomplete transcatheter aortic valve expansion. J. Biomech. 48:3663–3671, 2015.CrossRefGoogle Scholar
  2. 2.
    Abbasi, M., and A. Azadani. Stress analysis of transcatheter aortic valve leaflets under dynamic loading: effect of reduced tissue thickness. J. Heart Valve Dis. 26:386–396, 2017.Google Scholar
  3. 3.
    Abbasi, M., M. S. Barakat, K. Vahidkhah, and A. N. Azadani. Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis. J. Mech. Behav. Biomed. 62:33–34, 2016.CrossRefGoogle Scholar
  4. 4.
    Abbasi, M., Q. Qiu, Y. Behnam, D. Dvir, C. Clary, and A. N. Azadani. High resolution three-dimensional strain mapping of bioprosthetic heart valves using digital image correlation. J. Biomech. 76:27–34, 2018. Scholar
  5. 5.
    Adams, D. H., J. J. Popma, M. J. Reardon, S. J. Yakubov, J. S. Coselli, G. M. Deeb, T. G. Gleason, M. Buchbinder, J. Hermiller, Jr, N. S. Kleiman, S. Chetcuti, J. Heiser, W. Merhi, G. Zorn, P. Tadros, N. Robinson, G. Petrossian, G. C. Hughes, J. K. Harrison, J. Conte, B. Maini, M. Mumtaz, S. Chenoweth, J. K. Oh, and U. S. C. C. Investigators. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N. Engl. J. Med. 370:1790–1798, 2014.CrossRefGoogle Scholar
  6. 6.
    Aggarwal, A., and M. S. Sacks. An inverse modeling approach for semilunar heart valve leaflet mechanics: exploitation of tissue structure. Biomech. Model. Mechanobiol. 15:909–932, 2016.CrossRefGoogle Scholar
  7. 7.
    Arsalan, M., and T. Walther. Durability of prostheses for transcatheter aortic valve implantation. Nat Rev Cardiol 13:360–367, 2016.CrossRefGoogle Scholar
  8. 8.
    Banks, A., J. Vincent, and C. Anyakoha. A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat. Comput. 7:109–124, 2008.CrossRefGoogle Scholar
  9. 9.
    Barakat, M., D. Dvir, and A. N. Azadani. Fluid dynamic characterization of transcatheter aortic valves using particle image velocimetry. Artif. Organs 2018. Scholar
  10. 10.
    Barbanti, M., A. S. Petronio, F. Ettori, A. Latib, F. Bedogni, F. De Marco, A. Poli, C. Boschetti, M. De Carlo, and C. Fiorina. 5-year outcomes after transcatheter aortic valve implantation with CoreValve prosthesis. JACC Cardiovasc. Interv. 8:1084–1091, 2015.CrossRefGoogle Scholar
  11. 11.
    Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—part I: experimental results. J. Biomech. Eng. 122:23–30, 2000.CrossRefGoogle Scholar
  12. 12.
    Bourguignon, T., A. L. Bouquiaux-Stablo, P. Candolfi, A. Mirza, C. Loardi, M. A. May, R. El-Khoury, M. Marchand, and M. Aupart. Very long-term outcomes of the Carpentier-Edwards Perimount valve in aortic position. Ann. Thorac. Surg. 99:831–837, 2015.CrossRefGoogle Scholar
  13. 13.
    Bourguignon, T., R. El Khoury, P. Candolfi, C. Loardi, A. Mirza, J. Boulanger-Lothion, A.-L. Bouquiaux-Stablo-Duncan, F. Espitalier, M. Marchand, and M. Aupart. Very long-term outcomes of the Carpentier-Edwards Perimount aortic valve in patients aged 60 or younger. Ann. Thorac. Surg. 100:853–859, 2015.CrossRefGoogle Scholar
  14. 14.
    Cribier, A., H. Eltchaninoff, A. Bash, N. Borenstein, C. Tron, F. Bauer, G. Derumeaux, F. Anselme, F. Laborde, and M. B. Leon. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis first human case description. Circulation 106:3006–3008, 2002.CrossRefGoogle Scholar
  15. 15.
    Dvir, D., T. Bourguignon, C. M. Otto, R. T. Hahn, R. Rosenhek, J. G. Webb, H. Treede, M. E. Sarano, T. Feldman, and H. C. Wijeysundera. Standardized definition of structural valve degeneration for surgical and transcatheter bioprosthetic aortic valves. Circulation 137:388–399, 2018.CrossRefGoogle Scholar
  16. 16.
    Dvir, D., H. Eltchaninoff, J. Ye, A. Kan, E. Durand, A. Bizios, A. Cheung, M. Aziz, M. Simonato, and C. Tron. First look at long-term durability of transcatheter heart valves: assessment of valve function up to 10 years after implantation. Eur. J. Cardiothorac Surg., 2016.Google Scholar
  17. 17.
    Dvir, D., H. Eltchaninoff, J. Ye, A. Kan, E. Durand, A. Bizios, A. Cheung, M. Aziz, M. Simonato, C. Tron, Y. Arbel, R. Moss, J. Leipsic, H. Ofek, G. Perlman, M. Barbanti, M. Seidman, B. Philippe, R. Yao, R. Boone, S. Lauck, S. Lichtenstein, D. Wood, A. Cribier, and J. Webb. First look at long-term durability of transcatheter heart valves: assessment of valve function up to 10-years after implantation. In: EuroPCR 2016, Paris, France, 2016.Google Scholar
  18. 18.
    Food and Drug Administration. Reporting of Computational Modeling Studies in Medical Device Submissions—Draft Guidance for Industry and Food and Drug Administration Staff only. Rockville, MD: Food and Drug Administration, 2014.Google Scholar
  19. 19.
    Forcillo, J., M. Pellerin, L. P. Perrault, R. Cartier, D. Bouchard, P. Demers, and M. Carrier. Carpentier-Edwards pericardial valve in the aortic position: 25-years experience. Ann. Thorac. Surg. 96:486–493, 2013.CrossRefGoogle Scholar
  20. 20.
    Fries, R. C. Reliable Design of Medical Devices. Boca Raton: CRC Press, 2016.Google Scholar
  21. 21.
    Grunkemeier, G. L., A. P. Furnary, Y. Wu, L. Wang, and A. Starr. Durability of pericardial versus porcine bioprosthetic heart valves. J. Thorac. Cardiovasc. Surg. 144:1381–1386, 2012.CrossRefGoogle Scholar
  22. 22.
    Heide-Jørgensen, S., S. K. Krishna, J. Taborsky, T. Bechsgaard, R. Zegdi, and P. Johansen. A novel method for optical high spatiotemporal strain analysis for transcatheter aortic valves in vitro. J. Biomech. Eng. 138:034504, 2016.CrossRefGoogle Scholar
  23. 23.
    Hiester, E. D., and M. S. Sacks. Optimal bovine pericardial tissue selection sites. I. Fiber architecture and tissue thickness measurements. J. Biomed. Mater. Res. 39:207–214, 1998.CrossRefGoogle Scholar
  24. 24.
    Holzapfel, G. A. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Chichester: Wiley, 2000.Google Scholar
  25. 25.
    Holzapfel, G. A., and R. W. Ogden. On planar biaxial tests for anisotropic nonlinearly elastic solids. A continuum mechanical framework. Math. Mech. Solids 14:474–489, 2009.CrossRefGoogle Scholar
  26. 26.
    Hsu, M.-C., D. Kamensky, F. Xu, J. Kiendl, C. Wang, M. C. Wu, J. Mineroff, A. Reali, Y. Bazilevs, and M. S. Sacks. Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput. Mech. 55:1211–1225, 2015.CrossRefGoogle Scholar
  27. 27.
    Humphrey, J. D. Mechanics of the arterial wall: review and directions. Crit. Rev. Biomed. Eng. 23:1–162, 1995.CrossRefGoogle Scholar
  28. 28.
    Humphrey, J. D. Continuum biomechanics of soft biological tissues. Proc. R. Soc. A Math. Phys. Eng. Sci. 459:3–46, 2003.CrossRefGoogle Scholar
  29. 29.
    Isaacs, A. J., J. Shuhaiber, A. Salemi, O. W. Isom, and A. Sedrakyan. National trends in utilization and in-hospital outcomes of mechanical versus bioprosthetic aortic valve replacements. J. Thorac. Cardiovasc. Surg. 149:1262e.3–1269e.3, 2015.CrossRefGoogle Scholar
  30. 30.
    ISO 5840-1:2015. Cardiovascular implants—cardiac valve prostheses—part 1: general requirements.Google Scholar
  31. 31.
    Jermihov, P. N., L. Jia, M. S. Sacks, R. C. Gorman, J. H. Gorman, III, and K. B. Chandran. Effect of geometry on the leaflet stresses in simulated models of congenital bicuspid aortic valves. Cardiovasc Eng Technol 2:48–56, 2011.CrossRefGoogle Scholar
  32. 32.
    Johnston, D. R., E. G. Soltesz, N. Vakil, J. Rajeswaran, E. E. Roselli, J. F. Sabik, 3rd, N. G. Smedira, L. G. Svensson, B. W. Lytle, and E. H. Blackstone. Long-term durability of bioprosthetic aortic valves: implications from 12569 implants. Ann. Thorac. Surg. 99:1239–1247, 2015.CrossRefGoogle Scholar
  33. 33.
    Kapadia, S. R., M. B. Leon, R. R. Makkar, E. M. Tuzcu, L. G. Svensson, S. Kodali, J. G. Webb, M. J. Mack, P. S. Douglas, V. H. Thourani, V. C. Babaliaros, H. C. Herrmann, W. Y. Szeto, A. D. Pichard, M. R. Williams, G. P. Fontana, D. C. Miller, W. N. Anderson, C. R. Smith, J. J. Akin, and M. J. Davidson. 5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet 385(9986):2485–2491, 2015.CrossRefGoogle Scholar
  34. 34.
    Kim, H., J. Lu, M. S. Sacks, and K. B. Chandran. Dynamic simulation pericardial bioprosthetic heart valve function. J. Biomech. Eng. 128:717–724, 2006.CrossRefGoogle Scholar
  35. 35.
    Kodali, S. K., M. R. Williams, C. R. Smith, L. G. Svensson, J. G. Webb, R. R. Makkar, G. P. Fontana, T. M. Dewey, V. H. Thourani, A. D. Pichard, M. Fischbein, W. Y. Szeto, S. Lim, K. L. Greason, P. S. Teirstein, S. C. Malaisrie, P. S. Douglas, R. T. Hahn, B. Whisenant, A. Zajarias, D. Wang, J. J. Akin, W. N. Anderson, and M. B. Leon. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med 366:1686–1695, 2012.CrossRefGoogle Scholar
  36. 36.
    Lee, C.-H., R. Amini, R. C. Gorman, J. H. Gorman, and M. S. Sacks. An inverse modeling approach for stress estimation in mitral valve anterior leaflet valvuloplasty for in vivo valvular biomaterial assessment. J. Biomech. 47:2055–2063, 2014.CrossRefGoogle Scholar
  37. 37.
    Leon, M. B., C. R. Smith, M. J. Mack, R. R. Makkar, L. G. Svensson, S. K. Kodali, V. H. Thourani, E. M. Tuzcu, D. C. Miller, H. C. Herrmann, D. Doshi, D. J. Cohen, A. D. Pichard, S. Kapadia, T. Dewey, V. Babaliaros, W. Y. Szeto, M. R. Williams, D. Kereiakes, A. Zajarias, K. L. Greason, B. K. Whisenant, R. W. Hodson, J. W. Moses, A. Trento, D. L. Brown, W. F. Fearon, P. Pibarot, R. T. Hahn, W. A. Jaber, W. N. Anderson, M. C. Alu, and J. G. Webb. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N. Engl. J. Med. 374:1609–1620, 2016.CrossRefGoogle Scholar
  38. 38.
    Leon, M. B., C. R. Smith, M. Mack, D. C. Miller, J. W. Moses, L. G. Svensson, E. M. Tuzcu, J. G. Webb, G. P. Fontana, R. R. Makkar, D. L. Brown, P. C. Block, R. A. Guyton, A. D. Pichard, J. E. Bavaria, H. C. Herrmann, P. S. Douglas, J. L. Petersen, J. J. Akin, W. N. Anderson, D. Wang, and S. Pocock. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 363:1597–1607, 2010.CrossRefGoogle Scholar
  39. 39.
    Mack, M., and D. Holmes. Bioprosthetic valve thrombosis: the harder one looks, the more one finds. J. Thorac. Cardiovasc. Surg. 152:952–953, 2016.CrossRefGoogle Scholar
  40. 40.
    Mack, M. J., M. B. Leon, C. R. Smith, D. C. Miller, J. W. Moses, E. M. Tuzcu, J. G. Webb, P. S. Douglas, W. N. Anderson, E. H. Blackstone, S. K. Kodali, R. R. Makkar, G. P. Fontana, S. Kapadia, J. Bavaria, R. T. Hahn, V. H. Thourani, V. Babaliaros, A. Pichard, H. C. Herrmann, D. L. Brown, M. Williams, M. J. Davidson, L. G. Svensson, and J. Akin. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet 385(9986):2477–2484, 2015.CrossRefGoogle Scholar
  41. 41.
    Makkar, R. R., G. P. Fontana, H. Jilaihawi, S. Kapadia, A. D. Pichard, P. S. Douglas, V. H. Thourani, V. C. Babaliaros, J. G. Webb, H. C. Herrmann, J. E. Bavaria, S. Kodali, D. L. Brown, B. Bowers, T. M. Dewey, L. G. Svensson, M. Tuzcu, J. W. Moses, M. R. Williams, R. J. Siegel, J. J. Akin, W. N. Anderson, S. Pocock, C. R. Smith, and M. B. Leon. Transcatheter aortic-valve replacement for inoperable severe aortic stenosis. N Engl J Med 366:1696–1704, 2012.CrossRefGoogle Scholar
  42. 42.
    Martin, C., and W. Sun. Comparison of transcatheter aortic valve and surgical bioprosthetic valve durability: a fatigue simulation study. J. Biomech. Eng. 48:3026–3034, 2015.CrossRefGoogle Scholar
  43. 43.
    Morris, P. D., A. Narracott, H. von Tengg-Kobligk, D. A. S. Soto, S. Hsiao, A. Lungu, P. Evans, N. W. Bressloff, P. V. Lawford, and D. R. Hose. Computational fluid dynamics modelling in cardiovascular medicine. Heart 102:18–28, 2016.CrossRefGoogle Scholar
  44. 44.
    Murdock, K., C. Martin, and W. Sun. Characterization of mechanical properties of pericardium tissue using planar biaxial tension and flexural deformation. J. Mech. Behav. Biomed. Mater. 77:148–156, 2018.CrossRefGoogle Scholar
  45. 45.
    Nishimura, R. A., C. M. Otto, R. O. Bonow, B. A. Carabello, J. P. Erwin, 3rd, R. A. Guyton, P. T. O’Gara, C. E. Ruiz, N. J. Skubas, P. Sorajja, T. M. Sundt, 3rd, and J. D. Thomas. 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: a Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129:e521–643, 2014.Google Scholar
  46. 46.
    Popma, J. J., D. H. Adams, M. J. Reardon, S. J. Yakubov, N. S. Kleiman, D. Heimansohn, J. Hermiller, Jr, G. C. Hughes, J. K. Harrison, J. Coselli, J. Diez, A. Kafi, T. Schreiber, T. G. Gleason, J. Conte, M. Buchbinder, G. M. Deeb, B. Carabello, P. W. Serruys, S. Chenoweth, J. K. Oh, and CoreValve United States Clinical Investigators. Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery. J. Am. Coll. Cardiol. 63:1972–1981, 2014.CrossRefGoogle Scholar
  47. 47.
    Rabkin, S. W., and P. H. Hsu. Mathematical and mechanical modeling of stress–strain relationship of pericardium. Am. J. Physiol. 229:896–900, 1975.Google Scholar
  48. 48.
    Reardon, M. J., N. S. Kleiman, D. H. Adams, S. J. Yakubov, J. S. Coselli, G. M. Deeb, D. O’Hair, T. G. Gleason, J. S. Lee, J. B. Hermiller, Jr, S. Chetcuti, J. Heiser, W. Merhi, G. L. Zorn, 3rd, P. Tadros, N. Robinson, G. Petrossian, G. C. Hughes, J. K. Harrison, B. Maini, M. Mumtaz, J. V. Conte, J. R. Resar, V. Aharonian, T. Pfeffer, J. K. Oh, J. Huang, and J. J. Popma. Outcomes in the randomized CoreValve US pivotal high-risk trial in patients with a society of thoracic Surgeons risk score of 7% or less. JAMA Cardiol 1(8):945–949, 2016.CrossRefGoogle Scholar
  49. 49.
    Rodriguez-Gabella, T., P. Voisine, R. Puri, P. Pibarot, and J. Rodés-Cabau. Aortic bioprosthetic valve durability: incidence, mechanisms, predictors, and management of surgical and transcatheter valve degeneration. J. Am. Coll. Cardiol. 70:1013–1028, 2017.CrossRefGoogle Scholar
  50. 50.
    Roy, T., and A. Chanda. Computational modelling and analysis of latest commercially available coronary stents during deployment. Procedia Mater. Sci. 5:2310–2319, 2014.CrossRefGoogle Scholar
  51. 51.
    Sacks, M. S. Biaxial mechanical evaluation of planar biological materials. J. Elasticity Phys. Sci. Solids 61:199, 2000.CrossRefGoogle Scholar
  52. 52.
    Sacks, M. S., W. Zhang, and S. Wognum. A novel fibre-ensemble level constitutive model for exogenous cross-linked collagenous tissues. Interface Focus 6:20150090, 2016.CrossRefGoogle Scholar
  53. 53.
    Schoen, F. J. Mechanisms of function and disease of natural and replacement heart valves. Annu. Rev. Pathol 7:161–183, 2012.CrossRefGoogle Scholar
  54. 54.
    Schoen, F., R. Levy, A. Nelson, W. Bernhard, A. Nashef, and M. Hawley. Onset and progression of experimental bioprosthetic heart valve calcification. Lab. Invest. 52:523–532, 1985.Google Scholar
  55. 55.
    Simionescu, D., A. Simionescu, and R. Deac. Mapping of glutaraldehyde-treated bovine pericardium and tissue selection for bioprosthetic heart valves. J. Biomed. Mater. Res. Part A 27:697–704, 1993.CrossRefGoogle Scholar
  56. 56.
    Smith, C. R., M. B. Leon, M. J. Mack, D. C. Miller, J. W. Moses, L. G. Svensson, E. M. Tuzcu, J. G. Webb, G. P. Fontana, R. R. Makkar, M. Williams, T. Dewey, S. Kapadia, V. Babaliaros, V. H. Thourani, P. Corso, A. D. Pichard, J. E. Bavaria, H. C. Herrmann, J. J. Akin, W. N. Anderson, D. Wang, and S. J. Pocock. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med 364:2187–2198, 2011.CrossRefGoogle Scholar
  57. 57.
    Soares, J. S., K. R. Feaver, W. Zhang, D. Kamensky, A. Aggarwal, and M. S. Sacks. Biomechanical behavior of bioprosthetic heart valve heterograft tissues: characterization, simulation, and performance. Cardiovasc. Eng. Technol. 7:309–351, 2016.CrossRefGoogle Scholar
  58. 58.
    Sun, W., A. Abad, and M. S. Sacks. Simulated bioprosthetic heart valve deformation under quasi-static loading. J. Biomech. Eng. 127:905–914, 2005.CrossRefGoogle Scholar
  59. 59.
    Toggweiler, S., K. H. Humphries, M. Lee, R. K. Binder, R. R. Moss, M. Freeman, J. Ye, A. Cheung, D. A. Wood, and J. G. Webb. 5-year outcome after transcatheter aortic valve implantation. J. Am. Coll. Cardiol. 61:413–419, 2013.CrossRefGoogle Scholar
  60. 60.
    Vahidkhah, K., M. Barakat, M. Abbasi, S. Javani, P. N. Azadani, A. Tandar, D. Dvir, and A. N. Azadani. Valve thrombosis following transcatheter aortic valve replacement: significance of blood stasis on the leaflets. Eur. J. Cardiothorac. Surg. 51:927–935, 2017.Google Scholar
  61. 61.
    Xuan, Y., K. Krishnan, J. Ye, D. Dvir, J. M. Guccione, L. Ge, and E. E. Tseng. Stent and leaflet stresses in a 26-mm first-generation balloon-expandable transcatheter aortic valve. J Thorac. Cardiovasc. Surg. 153:1065–1073, 2017.CrossRefGoogle Scholar
  62. 62.
    Zhang, W., and M. S. Sacks. Modeling the response of exogenously crosslinked tissue to cyclic loading: the effects of permanent set. J. Mech. Behav. Biomed. Mater. 75:336–350, 2017.CrossRefGoogle Scholar
  63. 63.
    Zioupos, P., and J. Barbenel. Mechanics of native bovine pericardium: II. A structure based model for the anisotropic mechanical behaviour of the tissue. Biomaterials 15:374–382, 1994.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.The DU Cardiovascular Biomechanics Laboratory, Department of Mechanical and Materials EngineeringUniversity of DenverDenverUSA
  2. 2.Department of Medicine, Division of CardiologyUniversity of WashingtonSeattleUSA

Personalised recommendations