Annals of Biomedical Engineering

, Volume 47, Issue 1, pp 85–96 | Cite as

Reduction of Pressure Gradient and Turbulence Using Vortex Generators in Prosthetic Heart Valves

  • Hoda Hatoum
  • Lakshmi P. DasiEmail author


Blood damage and platelet activation are inherent problems with present day bi-leaflet mechanical heart valve designs. Passive flow control through different arrangements of vortex generators (VG) as means of improving pressure gradients and reducing turbulence are investigated. Rectangular VG arrays were mounted on the downstream surfaces of a 23 mm 3D printed mechanical valve. The effect of VGs on the resulting flow structures were assessed under pulsatile physiological flow conditions where high resolution particle image velocimetry measurement was performed. The co-rotating VGs showed lower Reynolds shear stresses and improved pressure gradients (PG) compared with the counter-rotating ones and the no-VG control one (that showed higher turbulence). RSS was found 38.13 ± 0.89, 12.95 ± 0.32, 15.75 ± 0.71, 24.54 ± 0.84 and 16.33 ± 0.58 Pa for the control, co-rotating VGs, 8 counter-rotating VGs, 4 far-spaced VGs and 4 closely-spaced VGs, respectively. PG of 10.45 ± 0.94 mmHg was obtained with co-rotating VGs and the difference was significant compared with the other configurations (control 14.88 ± 0.4 mmHg; 8 counter-rotating VGs 13.76 ± 0.51 mmHg; 4 far-spaced VGs 13.84 ± 0.09 mmHg; and 4 closely-spaced VGs 15.37 ± 0.16 mmHg). Co-rotating VGs for this application induce a more delayed flow separation and a more homogenized and streamlined transition of flow compared with the counter-rotating VGs. Passive flow control techniques deployed on BHMVs is potentially beneficial as significant control of flow at small length scales without inducing large-scale design modifications of the valve.


Bi-leaflet mechanical valves Reynold’s shear stress Vortex generators Co-rotating Counter-rotating Flow separation Anti-coagulant Blood damage 



Vortex generators


Pressure gradient


Reynolds shear stress


Particle image velocimetry


Effective orifice area


Bi-leaflet mechanical heart valve



The research done was partly supported by National Institutes of Health (NIH) under Award Number R01HL119824 and R01HL135505.

Conflict of interest

Dr. Dasi reports having two patent applications on novel surgical and transcatheter valves. He also has a patent issued on vortex generators on heart valves and a patent application on super hydrophobic vortex generator enhanced mechanical heart valves. No other conflicts were reported.

Supplementary material

Video 1 Fluid particles streaks for every valve case in every model over the cardiac cycle (AVI 9111 kb)


  1. 1.
    Antiga, L., and D. A. Steinman. Rethinking turbulence in blood. Biorheology 46(2):77–81, 2009.Google Scholar
  2. 2.
    Baudet, E. M., et al. A 5 1/2 year experience with the St. Jude Medical cardiac valve prosthesis. Early and late results of 737 valve replacements in 671 patients. J. Thorac. Cardiovasc. Surg. 90(1):137–144, 1985.Google Scholar
  3. 3.
    Bradbury, L., and A. Khadem. The distortion of a jet by tabs. J. Fluid Mech. 70(4):801–813, 1975.Google Scholar
  4. 4.
    Cannegieter, S. C., et al. Optimal oral anticoagulant therapy in patients with mechanical heart valves. N. Engl. J. Med. 333(1):11–17, 1995.Google Scholar
  5. 5.
    Chandran, K. B., S. E. Rittgers, and A. P. Yoganathan. Biofluid Mechanics: The Human Circulation. Boca Raton: CRC Press, 2006.Google Scholar
  6. 6.
    Chang, B., et al. Long-term results with St. Jude Medical and CarboMedics prosthetic heart valves. J. Heart Valve Dis. 10(2):185–194, 2001; discussion 195.Google Scholar
  7. 7.
    Dale, J., and E. Myhre. Intravascular hemolysis in the late course of aortic valve replacement. Relation to valve type, size, and function. Am. Heart J. 96(1):24–30, 1978.Google Scholar
  8. 8.
    Dasi, L. P., et al. Passive flow control of bileaflet mechanical heart valve leakage flow. J. Biomech. 41(6):1166–1173, 2008.Google Scholar
  9. 9.
    Dasi, L. P., et al. Fluid mechanics of artificial heart valves. Clin. Exp. Pharmacol. Physiol. 36(2):225–237, 2009.Google Scholar
  10. 10.
    David, T., and C. Hsu. The integrated design of mechanical bi-leaflet prosthetic heart valves. Med. Eng. Phys. 18(6):452–462, 1996.Google Scholar
  11. 11.
    Dovgal, A., V. Kozlov, and A. Michalke. Laminar boundary layer separation: instability and associated phenomena. Prog. Aerosp. Sci. 30(1):61–94, 1994.Google Scholar
  12. 12.
    Giersiepen, M., et al. Estimation of shear stress-related blood damage in heart valve prostheses-in vitro comparison of 25 aortic valves. Int. J. Artif. Organs 13(5):300–306, 1990.Google Scholar
  13. 13.
    Godard, G., and M. Stanislas. Control of a decelerating boundary layer. Part 1: optimization of passive vortex generators. Aerosp. Sci. Technol. 10(3):181–191, 2006.Google Scholar
  14. 14.
    Govindarajan, V., et al. Impact of design parameters on bi-leaflet mechanical heart valve flow dynamics. J. Heart Valve Dis. 18(5):535, 2009.Google Scholar
  15. 15.
    Harker, L. A., and S. J. Slichter. Studies of platelet and fibrinogen kinetics in patients with prosthetic heart valves. N. Engl. J. Med. 283(24):1302–1305, 1970.Google Scholar
  16. 16.
    Hatoum, H., and L. P. Dasi. Sinus hemodynamics in representative stenotic native bicuspid and tricuspid aortic valves: an in-vitro study. Fluids 3(3):56, 2018.Google Scholar
  17. 17.
    Hatoum, H., F. Heim, and L. P. Dasi. Stented valve dynamic behavior induced by polyester fiber leaflet material in transcatheter aortic valve devices. J. Mech. Behav. Biomed. Mater. 86:232–239, 2018.Google Scholar
  18. 18.
    Hatoum, H., B. L. Moore, and L. P. Dasi. On the significance of systolic flow waveform on aortic valve energy loss. Ann. Biomed. Eng. 2018. Scholar
  19. 19.
    Hatoum, H., et al. Aortic sinus flow stasis likely in valve-in-valve transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 154(1):32e1–43e1, 2017.Google Scholar
  20. 20.
    Hatoum, H., et al. An in-vitro evaluation of turbulence after transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 2018. Scholar
  21. 21.
    Hatoum, H., et al. Impact of patient morphologies on sinus flow stasis in transcatheter aortic valve replacement: an in vitro study. J. Thorac. Cardiovasc. Surg. 2018. Scholar
  22. 22.
    Hatoum, H., et al. Implantation depth and rotational orientation effect on valve-in-valve hemodynamics and sinus flow. Ann. Thorac. Surg. 106(1):70–78, 2018.Google Scholar
  23. 23.
    Hatoum, H., et al. Effect of severe bioprosthetic valve tissue ingrowth and inflow calcification on valve-in-valve performance. J. Biomech. 74:171–179, 2018.Google Scholar
  24. 24.
    Hatoum, H., et al. Sinus hemodynamics variation with tilted transcatheter aortic valve deployments. Ann. Biomed. Eng. 2018. Scholar
  25. 25.
    Hund, S. J., J. F. Antaki, and M. Massoudi. On the representation of turbulent stresses for computing blood damage. Int. J. Eng. Sci. 48(11):1325–1331, 2010.Google Scholar
  26. 26.
    Hung, T., et al. Shear-induced aggregation and lysis of platelets. ASAIO J. 22(1):285–290, 1976.Google Scholar
  27. 27.
    Ibrahim, M., et al. The St. Jude Medical prosthesis: a thirteen-year experience. J. Thorac. Cardiovasc. Surg. 108(2):221–230, 1994.Google Scholar
  28. 28.
    Kameneva, M. V., et al. Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. ASAIO J. 50(5):418–423, 2004.Google Scholar
  29. 29.
    Khalili, F., P. Gamage, and H.A. Mansy. Hemodynamics of a bileaflet mechanical heart valve with different levels of dysfunction. arXiv preprint. arXiv:1711.11153, 2017.
  30. 30.
    Langan, K. J., and J. J. Samuels. Experimental investigation of maneuver performance enhancements on an advanced fighter/attack aircraft. In: AIAA 33rd Aerospace Sciences Meeting, Reno, NV, 1995.Google Scholar
  31. 31.
    Lin, J. Control of turbulent boundary-layer separation using micro-vortex generators. In: 30th Fluid Dynamics Conference, 1999.Google Scholar
  32. 32.
    Lin, J. C. Review of research on low-profile vortex generators to control boundary-layer separation. Prog. Aerosp. Sci. 38(4–5):389–420, 2002.Google Scholar
  33. 33.
    Masters, R., et al. Comparative results with the St. Jude Medical and Medtronic Hall mechanical valves. J. Thorac. Cardiovasc. Surg. 110(3):663–671, 1995.Google Scholar
  34. 34.
    Murphy, D. W., et al. Reduction of procoagulant potential of b-datum leakage jet flow in bileaflet mechanical heart valves via application of vortex generator arrays. J. Biomech. Eng. 132(7):071011, 2010.Google Scholar
  35. 35.
    Poller, L., et al. Managing oral anticoagulant therapy. Chest 119:22S–38S, 2001.Google Scholar
  36. 36.
    Quinlan, N. J., and P. N. Dooley. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow. Ann. Biomed. Eng. 35(8):1347–1356, 2007.Google Scholar
  37. 37.
    Ramstack, J., L. Zuckerman, and L. Mockros. Shear-induced activation of platelets. J. Biomech. 12(2):113–125, 1979.Google Scholar
  38. 38.
    Simpson, R. L. Turbulent boundary-layer separation. Annu. Rev. Fluid Mech. 21(1):205–232, 1989.Google Scholar
  39. 39.
    Vandenmeer, F., et al. (1993) Bleeding complications in patients treated with oral anticoagulants in a routine situation. In: Thrombosis and Haemostasis. Stuttgart: FK Schattauer Verlag Gmbh.Google Scholar
  40. 40.
    Vongpatanasin, W., L. D. Hillis, and R. A. Lange. Prosthetic heart valves. N. Engl. J. Med. 335(6):407–416, 1996.Google Scholar
  41. 41.
    Williams, A. Release of serotonin from human platelets by acoustic microstreaming. J. Acoust. Soc. Am. 56(5):1640–1643, 1974.Google Scholar
  42. 42.
    Yin, W., et al. Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann. Biomed. Eng. 32(8):1058–1066, 2004.Google Scholar
  43. 43.
    Yoganathan, A. P., Z. He, and S. Casey Jones. Fluid mechanics of heart valves. Annu. Rev. Biomed. Eng. 6:331–362, 2004.Google Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations