Advertisement

Annals of Biomedical Engineering

, Volume 47, Issue 1, pp 213–222 | Cite as

Near Infrared Spectroscopic Evaluation of Ligament and Tendon Biomechanical Properties

  • Jari TorniainenEmail author
  • Aapo Ristaniemi
  • Jaakko K. Sarin
  • Santtu Mikkonen
  • Isaac O. Afara
  • Lauri Stenroth
  • Rami K. Korhonen
  • Juha Töyräs
Article

Abstract

Knee ligaments and tendons are collagen-rich viscoelastic connective tissues that provide vital mechanical stabilization and support to the knee joint. Deterioration of ligaments has an adverse effect on the health of the knee and can eventually lead to ligament rupture and osteoarthritis. In this study, the feasibility of near infrared spectroscopy (NIRS) was, for the first time, tested for evaluation of ligament and tendon mechanical properties by performing measurements on bovine stifle joint ligament (N = 40) and patellar tendon (N = 10) samples. The mechanical properties of the samples were determined using a uniaxial tensile testing protocol. Partial least squares regression models were then developed to determine if morphological, viscoelastic, and quasi-static properties of the samples could be predicted from the NIR spectra. Best performance of NIRS in predicting mechanical properties was observed for toughness at yield point (median \(Q^{2}_{\rm{CV}}=0.54\), median normalized \(RMSE_{\rm{CV}}=6.1\%\)), toughness at failure point (median \(Q^{2}_{\rm{CV}}=0.53\), median normalized \(RMSE_{\rm{CV}}=6.6\%\)), and the ultimate strength of the ligament/tendon (median \(Q^{2}_{\rm{CV}}=0.52\), median normalized \(RMSE_{\rm{CV}}=8.3\%\)). Thus, we show that NIRS is capable of estimating ligament and tendon biomechanical properties, especially in parameters related to tissue failure. We believe this method could substantially enhance the currently limited arthroscopic evaluation of ligaments and tendons.

Keywords

Near infrared spectroscopy Knee ligaments Arthroscopy 

Notes

Acknowledgments

This work was supported in part by Academy of Finland (Grants 286526 and 267551), Doctoral Programme in Science, Technology and Computing (SCITECO) of University of Eastern Finland, and the Research Committee of the Kuopio University Hospital Catchment Area for the State Research Funding (Projects 5203111, 5041744, 5041750 and 5654156), Kuopio, Finland. S. Mikkonen would also like to acknowledge funding from The Nessling Foundation.

Conflict of interest

The authors have no conflicts of interest regarding the study or preparation of the manuscript.

References

  1. 1.
    Afara, I., I. Prasadam, R. Crawford, Y. Xiao, and A. Oloyede. Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation to mankin score. Osteoarthr. Cartil. 20:1367–1373, 2012.CrossRefGoogle Scholar
  2. 2.
    Afara, I., S. Singh, and A. Oloyede. Load-unloading response of intact and artificially degraded articular cartilage correlated with near infrared (NIR) absorption spectra. J. Mech. Behav. Biomed. Mater. 20:249–258, 2013.CrossRefGoogle Scholar
  3. 3.
    Ala-Myllymäki, J., E. K. Danso, J. T. Honkanen, R. K. Korhonen, J. Töyräs, and I. O. Afara. Optical spectroscopic characterization of human meniscus biomechanical properties. J. Biomed. Opt. 22:125008, 2017.CrossRefGoogle Scholar
  4. 4.
    Ala-Myllymäki, J., J. T. Honkanen, J. Töyräs, and I. O. Afara. Optical spectroscopic determination of human meniscus composition. J. Orthop. Res. 34:270–278, 2016.CrossRefGoogle Scholar
  5. 5.
    Alexander, D., A. Tropsha, and D. A. Winkler. Beware of r 2: simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J. Chem. Inf. Model. 55:1316–1322, 2015.CrossRefGoogle Scholar
  6. 6.
    Amin, S., A. Guermazi, M. P. LaValley, J. Niu, M. Clancy, D. J. Hunter, M. Grigoryan, and D. T. Felson. Complete anterior cruciate ligament tear and the risk for cartilage loss and progression of symptoms in men and women with knee osteoarthritis. Osteoarthr. Cartil. 16:897–902, 2008.CrossRefGoogle Scholar
  7. 7.
    Bellon-Maurel, V. and A. McBratney. Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils-critical review and research perspectives. Soil Biol. Biochem. 43:1398–1410, 2011.CrossRefGoogle Scholar
  8. 8.
    Benjamin, M. and J. Ralphs. Tendons and ligaments-an overview. Histol. Histopathol. 12:1135–1144, 1997.Google Scholar
  9. 9.
    Binfield, P., N. Maffulli, and J. King. Patterns of meniscal tears associated with anterior cruciate ligament lesions in athletes. Injury 24:557–561, 1993.CrossRefGoogle Scholar
  10. 10.
    Bonifasi-Lista, C., S. P. Lake, M. S. Small, and J. A. Weiss. Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading. J. Orthop. Res. 23:67–76, 2005.CrossRefGoogle Scholar
  11. 11.
    Chimich, D., N. Shrive, C. Frank, L. Marchuk, and R. Bray. Water content alters viscoelastic behaviour of the normal adolescent rabbit medial collateral ligament. J. Biomech. 25:835–837, 1992.CrossRefGoogle Scholar
  12. 12.
    Dejean, S., I. Gonzalez, K.-A. Lê Cao, P. Monget, J. Coquery, F. Yao, B. Liquet, and F. Rohart. mixomics: Omics data integration project. R package , 2013.Google Scholar
  13. 13.
    Henninger, H. B., C. J. Underwood, S. J. Romney, G. L. Davis, and J. A. Weiss. Effect of elastin digestion on the quasi-static tensile response of medial collateral ligament. J. Orthop. Res. 31:1226–1233, 2013.CrossRefGoogle Scholar
  14. 14.
    Hofmann, G. O., J. Marticke, R. Grossstück, M. Hoffmann, M. Lange, H. K. Plettenberg, R. Braunschweig, O. Schilling, I. Kaden, and G. Spahn. Detection and evaluation of initial cartilage pathology in man: a comparison between MRT, arthroscopy and near-infrared spectroscopy (NIR) in their relation to initial knee pain. Pathophysiology 17:1–8, 2010.CrossRefGoogle Scholar
  15. 15.
    Jones, E., T. Oliphant, and P. Peterson. \(\{\)SciPy\(\}\): open source scientific tools for \(\{\)Python\(\}\), 2014.Google Scholar
  16. 16.
    Le Cao, K.-A., F. Rohart, I. Gonzalez, S. D. with key contributors Benoit Gautier, F. Bartolo, contributions from Pierre Monget, J. Coquery, F. Yao, and B. Liquet. mixOmics: Omics Data Integration Project, 2017. R package version 6.3.1.Google Scholar
  17. 17.
    Liquet, B., K.-A. Lê Cao, H. Hocini, and R. Thiébaut. A novel approach for biomarker selection and the integration of repeated measures experiments from two assays. BMC Bioinform. 13:325, 2012.CrossRefGoogle Scholar
  18. 18.
    Lohmander, L. S., P. M. Englund, L. L. Dahl, and E. M. Roos. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am. J. Sports Med. 35:1756–1769, 2007.CrossRefGoogle Scholar
  19. 19.
    Lujan, T. J., C. J. Underwood, N. T. Jacobs, and J. A. Weiss. Contribution of glycosaminoglycans to viscoelastic tensile behavior of human ligament. J. Appl. Physiol. 106:423–431, 2009.CrossRefGoogle Scholar
  20. 20.
    Martin, R., D. Burr, N. Sharkey, and D. Fyhrie. Skeletal Tissue Mechanics, Springer, New York 2015.Google Scholar
  21. 21.
    Mitsou, A. and P. Vallianatos. Meniscal injuries associated with rupture of the anterior cruciate ligament: a retrospective study. Injury 19:429–431, 1988.CrossRefGoogle Scholar
  22. 22.
    Padalkar, M., C. McGoverin, N. Pleshko, S. Barbash, and E. Kropf. Near infrared spectroscopy differentiates ligament and tendon composition. In: 2013 39th Annual Northeast Bioengineering Conference. 2013, pp. 66–67.Google Scholar
  23. 23.
    Padalkar, M. and N. Pleshko. Wavelength-dependent penetration depth of near infrared radiation into cartilage. Analyst 140:2093–2100, 2015.CrossRefGoogle Scholar
  24. 24.
    Palukuru, U. P., C. M. McGoverin, and N. Pleshko. Assessment of hyaline cartilage matrix composition using near infrared spectroscopy. Matrix Biol. 38:3–11, 2014.CrossRefGoogle Scholar
  25. 25.
    Prieto, N., R. Roehe, P. Lavin, G. Batten, and S. Andres. Application of near infrared reflectance spectroscopy to predict meat and meat products quality: a review. Meat Sci. 83:175–186, 2009.CrossRefGoogle Scholar
  26. 26.
    Proffen, B. L., M. McElfresh, B. C. Fleming, and M. M. Murray. A comparative anatomical study of the human knee and six animal species. Knee 19:493–499, 2012.CrossRefGoogle Scholar
  27. 27.
    R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-07-0.Google Scholar
  28. 28.
    Riley, G. Tendon and ligament biochemistry and pathology. Soft Tissue Rheumatol. 2053, 2004.Google Scholar
  29. 29.
    Ristaniemi, A., L. Stenroth, S. Mikkonen, and R. Korhonen. Comparison of elastic, viscoelastic and failure tensile material properties of knee ligaments and patellar tendon. J. Biomech. 79:31–38, 2018.CrossRefGoogle Scholar
  30. 30.
    Rohart, F., B. Gautier, A. Singh, and K.-A. Le Cao. mixomics: An r package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 13:e1005752, 2017.CrossRefGoogle Scholar
  31. 31.
    Rolfe, P. In vivo near-infrared spectroscopy. Annu. Rev. Biomed. Eng. 2:715–754, 2000.CrossRefGoogle Scholar
  32. 32.
    Sarin, J. K., M. Amissah, H. Brommer, D. Argüelles, J. Töyräs, and I. O. Afara. Near infrared spectroscopic mapping of functional properties of equine articular cartilage. Ann. Biomed. Eng. 44:3335–3345, 2016.CrossRefGoogle Scholar
  33. 33.
    Smith, K. D., A. Vaughan-Thomas, D. G. Spiller, J. F. Innes, P. D. Clegg, and E. J. Comerford. The organisation of elastin and fibrillins 1 and 2 in the cruciate ligament complex. J. Anat. 218:600–607, 2011.CrossRefGoogle Scholar
  34. 34.
    Spahn, G., H. Plettenberg, E. Kahl, H. M. Klinger, T. Mückley, and G. O. Hofmann. Near-infrared (nir) spectroscopy. a new method for arthroscopic evaluation of low grade degenerated cartilage lesions. results of a pilot study. BMC Musculoskelet. Disord. 8:47, 2007.CrossRefGoogle Scholar
  35. 35.
    Vasara, A. I., J. S. Jurvelin, L. Peterson, and I. Kiviranta. Arthroscopic cartilage indentation and cartilage lesions of anterior cruciate ligament-deficient knees. Am. J. Sports Med. 33:408–414, 2005.CrossRefGoogle Scholar
  36. 36.
    Viidik, A., C. Danielsen, and H. Oxlund. On fundamental and phenomenological models, structure and mechanical properties of collagen, elastin and glycosaminoglycan complexes. Biorheology 19:437–451, 1982.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
  2. 2.Diagnostic Imaging CenterKuopio University HospitalKuopioFinland

Personalised recommendations