Advertisement

In Vitro Models for Studying Transport Across Epithelial Tissue Barriers

  • Navein Arumugasaamy
  • Javier Navarro
  • J. Kent Leach
  • Peter C. W. Kim
  • John P. Fisher
Article

Abstract

Epithelial barriers are the body’s natural defense system to regulating passage from one domain to another. In our efforts to understand what can and cannot cross these barriers, models have emerged as a reductionist approach to rigorously study and investigate this question. In particular, in vitro tissue models have become prominent as there is an increased exploration of understanding biological molecular transport. Herein, we introduce the pertinent physiology, then discuss recent studies and approaches for building models of five epithelial tissues: skin, the gastrointestinal tract, the lungs, the blood–brain barrier, and the placenta. In particular, we evaluated literature from the past 5 years utilizing a tissue model to evaluate molecular transport. We then compare physiology of these tissues and discuss similarities in approaches, across tissues, to validate these models. We conclude with a summary of the approaches of growing interest across multiple tissues and an outlook on future steps to improve these models.

Keywords

Tissue model In vitro model Epithelial Transport Skin GI tract Blood–brain barrier Alveolar-capillary barrier Placental barrier 

Notes

Acknowledgments

This work was supported by a seed grant from the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Medical Center and the A. James Clark School of Engineering at the University of Maryland. J.N. acknowledges and thanks support from the Fulbright Scholars Program. The content is solely the responsibility of the authors and does not necessarily represent the official views of these funding sources.

Conflict of interest

None of the authors have competing interests with the work presented herein.

References

  1. 1.
    Abaci, H. E., Z. Guo, Y. Doucet, J. Jacków, and A. Christiano. Next generation human skin constructs as advanced tools for drug development. Exp. Biol. Med. 242:1657–1668, 2017.CrossRefGoogle Scholar
  2. 2.
    Abd, E., S. A. Yousef, M. N. Pastore, K. Telaprolu, Y. H. Mohammed, S. Namjoshi, J. E. Grice, and M. S. Roberts. Skin models for the testing of transdermal drugs. Clin. Pharmacol. Adv. Appl. 8:163–176, 2016.Google Scholar
  3. 3.
    Albekairi, N. A., S. Al-Enazy, S. Ali, and E. Rytting. Transport of digoxin-loaded polymeric nanoparticles across BeWo cells, an in vitro model of human placental trophoblast. Ther. Deliv. 6:1325–1334, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ali, H., I. Kalashnikova, M. A. White, M. Sherman, and E. Rytting. Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model. Int. J. Pharm. 454:149–157, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ali, S., and E. Rytting. Influences of nanomaterials on the barrier function of epithelial cells. Adv. Exp. Med. Biol. 811:45–54, 2014.PubMedCrossRefGoogle Scholar
  6. 6.
    Ananta, M., R. A. Brown, and V. Mudera. A rapid fabricated living dermal equivalent for skin tissue engineering: an in vivo evaluation in an acute wound model. Tissue Eng. Part A 18:353–361, 2012.PubMedCrossRefGoogle Scholar
  7. 7.
    Antunes, F., F. Andrade, F. Araújo, D. Ferreira, and B. Sarmento. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur. J. Pharm. Biopharm. 83:427–435, 2013.PubMedCrossRefGoogle Scholar
  8. 8.
    Appelt-Menzel, A., A. Cubukova, K. Günther, F. Edenhofer, J. Piontek, G. Krause, T. Stüber, H. Walles, W. Neuhaus, and M. Metzger. Establishment of a human blood–brain barrier co-culture model mimicking the neurovascular unit using induced pluri- and multipotent stem cells. Stem Cell Rep. 8:894–906, 2017.CrossRefGoogle Scholar
  9. 9.
    Araújo, J. R., A. C. Pereira, A. Correia-Branco, E. Keating, and F. Martel. Oxidative stress induced by tert-butylhydroperoxide interferes with the placental transport of glucose: in vitro studies with BeWo cells. Eur. J. Pharmacol. 720:218–226, 2013.PubMedCrossRefGoogle Scholar
  10. 10.
    Araújo, F., and B. Sarmento. Towards the characterization of an in vitro triple co-culture intestine cell model for permeability studies. Int. J. Pharm. 458:128–134, 2013.PubMedCrossRefGoogle Scholar
  11. 11.
    Arumugasaamy, N., H. B. Baker, D. S. Kaplan, P. C. W. Kim, and J. P. Fisher. Fabrication and printing of multi-material hydrogels. In: 3D Printing and Biofabrication, edited by A. Ovsianikov, J. Yoo, and V. Mironov. Cham: Springer International Publishing, 2016, pp. 1–34.  https://doi.org/10.1007/978-3-319-40498-1_13-1.CrossRefGoogle Scholar
  12. 12.
    Ataç, B., I. Wagner, R. Horland, R. Lauster, U. Marx, A. G. Tonevitsky, R. P. Azar, and G. Lindner. Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion. Lab Chip 13:3555, 2013.PubMedCrossRefGoogle Scholar
  13. 13.
    Banks, W. A. Characteristics of compounds that cross the blood–brain barrier. BMC Neurol. 9:S3, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Bannasch, H., A. Momeni, F. Knam, G. B. Stark, and M. Föhn. Tissue engineering of skin substitutes. Panminerva Med. 47:53–60, 2005.PubMedGoogle Scholar
  15. 15.
    Béduneau, A., C. Tempesta, S. Fimbel, Y. Pellequer, V. Jannin, F. Demarne, and A. Lamprecht. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure. Eur. J. Pharm. Biopharm. 87:290–298, 2014.PubMedCrossRefGoogle Scholar
  16. 16.
    Bellas, E., M. Seiberg, J. Garlick, and D. L. Kaplan. In vitro 3D full-thickness skin-equivalent tissue model using silk and collagen biomaterials. Macromol. Biosci. 12:1627–1636, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Bengalli, R., P. Mantecca, M. Camatini, and M. Gualtieri. Effect of nanoparticles and environmental particles on a cocultures model of the air-blood barrier. Int. Biomed. Res. 2013.  https://doi.org/10.1155/2013/801214.CrossRefGoogle Scholar
  18. 18.
    Bhattacharya, J., and M. A. Matthay. Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annu. Rev. Physiol. 75:593–615, 2013.PubMedCrossRefGoogle Scholar
  19. 19.
    Bhattacherjee, A., Y. Hrynets, and M. Betti. Transport of the glucosamine-derived browning product fructosazine (Polyhydroxyalkylpyrazine) across the human intestinal Caco-2 cell monolayer: role of the hexose transporters. J. Agric. Food Chem. 65:4642–4650, 2017.PubMedCrossRefGoogle Scholar
  20. 20.
    Biemans, E. A. L. M., L. Jäkel, R. M. W. de Waal, H. B. Kuiperij, and M. M. Verbeek. Limitations of the hCMEC/D3 cell line as a model for Aβ clearance by the human blood–brain barrier. J. Neurosci. Res. 95:1513–1522, 2017.PubMedCrossRefGoogle Scholar
  21. 21.
    Blundell, C., E. R. Tess, A. S. R. Schanzer, C. Coutifaris, E. J. Su, S. Parry, and D. Huh. A microphysiological model of the human placental barrier. Lab Chip 16:3065–3073, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bode, C. J., H. Jin, E. Rytting, P. S. Silverstein, A. M. Young, and K. L. Audus. In vitro models for studying trophoblast transcellular transport. Methods Mol. Med. 122:225–239, 2006.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Bond, J. R., and B. W. Barry. Limitations of hairless mouse skin as a model for in vitro permeation studies through human skin: hydration damage. J. Invest. Dermatol. 90:486–489, 1988.PubMedCrossRefGoogle Scholar
  24. 24.
    Booth, R., and H. Kim. Characterization of a microfluidic in vitro model of the blood–brain barrier (μBBB). Lab Chip 12:1784, 2012.PubMedCrossRefGoogle Scholar
  25. 25.
    Bove, P. F., H. Dang, C. Cheluvaraju, L. C. Jones, X. Liu, W. K. O’Neal, S. H. Randell, R. Schlegel, and R. C. Boucher. Breaking the in vitro alveolar type II cell proliferation barrier while retaining ion transport properties. Am. J. Respir. Cell Mol. Biol. 50:767–776, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Braakhuis, H. M., S. K. Kloet, S. Kezic, F. Kuper, M. V. D. Z. Park, S. Bellmann, M. van der Zande, S. Le Gac, P. Krystek, R. J. B. Peters, I. M. C. M. Rietjens, and H. Bouwmeester. Progress and future of in vitro models to study translocation of nanoparticles. Arch. Toxicol. 89:1469–1495, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Branka, R., G. Mirjana, T.-T. Estelle, P. Fabrice, and F. Francoise. Simultaneous absorption of vitamins C and E from topical microemulsions using reconstructed human epidermis as a skin model. Eur. J. Pharm. Biopharm. 72:69–75, 2009.CrossRefGoogle Scholar
  28. 28.
    Carr, K. E., and P. G. Toner. Morphology of the intestinal Mucosa. In: Pharmacology of Intestinal Permeation, edited by T. Z. Csáky. Berlin, Heidelberg: Springer, 1984, pp. 1–3.  https://doi.org/10.1007/978-3-642-69505-6_1.CrossRefGoogle Scholar
  29. 29.
    Carreras, N., C. Alonso, M. Martí, and M. J. Lis. Mass transport model through the skin by microencapsulation system. J. Microencapsul. 32:358–363, 2015.PubMedCrossRefGoogle Scholar
  30. 30.
    Cartwright, L., M. S. Poulsen, H. M. Nielsen, G. Pojana, L. E. Knudsen, M. Saunders, and E. Rytting. In vitro placental model optimization for nanoparticle transport studies. Int. J. Nanomedicine 7:497–510, 2012.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Castranova, V., J. Rabovsky, J. H. Tucker, and P. R. Miles. The alveolar type II epithelial cell: a multifunctional pneumocyte. Toxicol. Appl. Pharmacol. 93:472–483, 1988.PubMedCrossRefGoogle Scholar
  32. 32.
    Cecchelli, R., S. Aday, E. Sevin, C. Almeida, M. Culot, L. Dehouck, C. Coisne, B. Engelhardt, M. P. Dehouck, and L. Ferreira. A stable and reproducible human blood–brain barrier model derived from hematopoietic stem cells. PLoS ONE 9:e84179, 2014.CrossRefGoogle Scholar
  33. 33.
    Cho, H., J. H. Seo, K. H. K. Wong, Y. Terasaki, J. Park, K. Bong, K. Arai, E. H. Lo, and D. Irimia. Three-dimensional blood–brain barrier model for in vitro studies of neurovascular pathology. Sci. Rep. 5:15222, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Cho, C.-F., J. M. Wolfe, C. M. Fadzen, D. Calligaris, K. Hornburg, E. A. Chiocca, N. Y. R. Agar, B. L. Pentelute, and S. E. Lawler. Blood-brain–barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nat. Commun. 8:15623, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Conings, S., F. Amant, P. Annaert, and K. Van Calsteren. Integration and validation of the ex vivo human placenta perfusion model. J. Pharmacol. Toxicol. Methods 88:25–31, 2017.PubMedCrossRefGoogle Scholar
  36. 36.
    Correia Carreira, S., L. Walker, K. Paul, and M. Saunders. The toxicity, transport and uptake of nanoparticles in the in vitro BeWo b30 placental cell barrier model used within NanoTEST. Nanotoxicology 9:1–14, 2013.Google Scholar
  37. 37.
    Costello, C. M., M. B. Phillipsen, L. M. Hartmanis, M. A. Kwasnica, V. Chen, D. Hackam, M. W. Chang, W. E. Bentley, and J. C. March. Microscale bioreactors for in situ characterization of GI epithelial cell physiology. Sci. Rep. 7:1–10, 2017.CrossRefGoogle Scholar
  38. 38.
    Costello, C. M., R. M. Sorna, Y. L. Goh, I. Cengic, N. K. Jain, and J. C. March. 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics. Mol. Pharm. 11:2030–2039, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Crank, J. The Mathematics of Diffusion. Oxford: Oxford University Press, 1980.Google Scholar
  40. 40.
    Curren, R. D., G. C. Mun, D. P. Gibson, and M. J. Aardema. Development of a method for assessing micronucleus induction in a 3D human skin model (EpiDerm™). Mutat. Res. Toxicol. Environ. Mutagen. 607:192–204, 2006.CrossRefGoogle Scholar
  41. 41.
    Cussler, E. L. Mass Transfer in Fluid Systems. Cambridge: Cambridge University Press, 2009.CrossRefGoogle Scholar
  42. 42.
    Czupalla, C. J., S. Liebner, and K. Devraj. In vitro models of the blood–brain barrier. Methods Mol. Biol. 1135:415–437, 2014.PubMedCrossRefGoogle Scholar
  43. 43.
    Davies, D. J., J. R. Heylings, H. Gayes, T. J. McCarthy, and M. C. Mack. Further development of an in vitro model for studying the penetration of chemicals through compromised skin. Toxicol. Vitr. 38:101–107, 2017.CrossRefGoogle Scholar
  44. 44.
    Devriese, S., L. Van den Bossche, S. Van Welden, T. Holvoet, I. Pinheiro, P. Hindryckx, M. De Vos, and D. Laukens. T84 monolayers are superior to Caco-2 as a model system of colonocytes. Histochem. Cell Biol. 148:85–93, 2017.PubMedCrossRefGoogle Scholar
  45. 45.
    Duval, K., H. Grover, L.-H. Han, Y. Mou, A. F. Pegoraro, J. Fredberg, and Z. Chen. Modeling physiological events in 2D vs. 3D cell culture. Physiology 32:266–277, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Eigenmann, D. E., G. Xue, K. S. Kim, A. V. Moses, M. Hamburger, and M. Oufir. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies. Fluids Barriers CNS 10:33, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Elad, D., R. Levkovitz, A. J. Jaffa, G. Desoye, and M. Hod. Have we neglected the role of fetal endothelium in transplacental transport? Traffic 15:122–126, 2014.PubMedCrossRefGoogle Scholar
  48. 48.
    Ensign, L. M., R. Cone, and J. Hanes. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 64(6):557–570, 2012.PubMedCrossRefGoogle Scholar
  49. 49.
    Esch, M. B., G. J. Mahler, T. Stokol, and M. L. Shuler. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip 14:3081–3092, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Farrell, T. L., M. Gomez-Juaristi, L. Poquet, K. Redeuil, K. Nagy, M. Renouf, and G. Williamson. Absorption of dimethoxycinnamic acid derivatives in vitro and pharmacokinetic profile in human plasma following coffee consumption. Mol. Nutr. Food Res. 56:1413–1423, 2012.PubMedCrossRefGoogle Scholar
  51. 51.
    Fatehullah, A., S. H. Tan, and N. Barker. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18:246–254, 2016.PubMedCrossRefGoogle Scholar
  52. 52.
    Flamand, N., L. Marrot, J. P. Belaidi, L. Bourouf, E. Dourille, M. Feltes, and J. R. Meunier. Development of genotoxicity test procedures with Episkin®, a reconstructed human skin model: towards new tools for in vitro risk assessment of dermally applied compounds? Mutat. Res. Genet. Toxicol. Environ. Mutagen. 606:39–51, 2006.CrossRefGoogle Scholar
  53. 53.
    Fleischli, F. D., F. Morf, and C. Adlhart. Skin concentrations of topically applied substances in reconstructed human epidermis (RHE) compared with human skin using in vivo confocal raman microscopy. Chim. Int. J. Chem. 69:147–151, 2015.CrossRefGoogle Scholar
  54. 54.
    Freese, C., S. Hanada, P. Fallier-Becker, C. J. Kirkpatrick, and R. E. Unger. Identification of neuronal and angiogenic growth factors in an in vitro blood–brain barrier model system: relevance in barrier integrity and tight junction formation and complexity. Microvasc. Res. 111:1–11, 2017.PubMedCrossRefGoogle Scholar
  55. 55.
    Garland, M. J., K. Migalska, T. M. Tuan-Mahmood, T. Raghu Raj Singh, R. Majithija, E. Caffarel-Salvador, C. M. McCrudden, H. O. McCarthy, A. David Woolfson, and R. F. Donnelly. Influence of skin model on in vitro performance of drug-loaded soluble microneedle arrays. Int. J. Pharm. 434:80–89, 2012.PubMedCrossRefGoogle Scholar
  56. 56.
    Gaur, R., L. Mishra, and S. K. Sen Gupta. Diffusion and transport of molecules in living cells. In: Modelling and Simulation of Diffusive Processes, edited by S. K. Basu, and et al. Cham: Springer, 2014, pp. 27–48.  https://doi.org/10.1007/978-3-319-05657-9.CrossRefGoogle Scholar
  57. 57.
    Gayer, C. P., and M. D. Basson. The effects of mechanical forces on intestinal physiology and pathology. Cell. Signal. 21(8):1237–1244, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Gehrke, S. H., J. P. Fisher, M. Palasis, and M. E. Lund. Factors determining hydrogel permeability. Ann. N. Y. Acad. Sci. 831:179–184, 2006.CrossRefGoogle Scholar
  59. 59.
    González-Burgos, E., M. Carretero, and M. Gómez-Serranillos. In vitro permeability study of cns-active diterpenes from Sideritis spp. using cellular models of blood–brain barrier. Planta Med. 79:1545–1551, 2013.PubMedCrossRefGoogle Scholar
  60. 60.
    Grafmueller, S., P. Manser, L. Diener, P. A. Diener, X. Maeder-Althaus, L. Maurizi, W. Jochum, H. F. Krug, T. Buerki-Thurnherr, U. von Mandach, and P. Wick. Bidirectional transfer study of polystyrene nanoparticles across the placental barrier in an ex vivo human placental perfusion model. Environ. Health Perspect. 123:1280–1286, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Grégoire, S., C. Ribaud, F. Benech, J. R. Meunier, A. Garrigues-Mazert, and R. H. Guy. Prediction of chemical absorption into and through the skin from cosmetic and dermatological formulations. Br. J. Dermatol. 160:80–91, 2009.PubMedCrossRefGoogle Scholar
  62. 62.
    Guo, Z., C. A. Higgins, B. M. Gillette, M. Itoh, N. Umegaki, K. Gledhill, S. K. Sia, and A. M. Christiano. Building a microphysiological skin model from induced pluripotent stem cells. Stem Cell Res Ther. 2013.  https://doi.org/10.1186/scrt363.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hersom, M., H. C. Helms, N. Pretzer, C. Goldeman, A. I. Jensen, G. Severin, M. S. Nielsen, R. Holm, and B. Brodin. Transferrin receptor expression and role in transendothelial transport of transferrin in cultured brain endothelial monolayers. Mol. Cell. Neurosci. 76:59–67, 2016.PubMedCrossRefGoogle Scholar
  64. 64.
    Hilgendorf, C., H. Spahn-Langguth, C. G. Regårdh, E. Lipka, G. L. Amidon, and P. Langguth. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J. Pharm. Sci. 89:63–75, 2000.PubMedCrossRefGoogle Scholar
  65. 65.
    Hoff, D., L. Sheikh, S. Bhattacharya, S. Nayar, and T. J. Webster. Comparison study of ferrofluid and powder iron oxide nanoparticle permeability across the blood–brain barrier. Int. J. Nanomed. 8:703–710, 2013.Google Scholar
  66. 66.
    Horváth, L., Y. Umehara, C. Jud, F. Blank, A. Petri-Fink, and B. Rothen-Rutishauser. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci. Rep. 5:7974, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hsia, E., M. J. Johnston, R. J. Houlden, W. H. Chern, and H. E. J. Hofland. Effects of topically applied acitretin in reconstructed human epidermis and the rhino mouse. J. Invest. Dermatol. 128:125–130, 2008.PubMedCrossRefGoogle Scholar
  68. 68.
    Huang, X., M. Luthi, E. C. Ontsouka, S. Kallol, M. U. Baumann, D. V. Surbek, and C. Albrecht. Establishment of a confluent monolayer model with human primary trophoblast cells: novel insights into placental glucose transport. Mol. Hum. Reprod. 22:442–456, 2016.PubMedCrossRefGoogle Scholar
  69. 69.
    Huch, M., J. A. Knoblich, M. P. Lutolf, and A. Martinez-Arias. The hope and the hype of organoid research. Development 144:938–941, 2017.PubMedCrossRefGoogle Scholar
  70. 70.
    Huh, D., D. C. Leslie, B. D. Matthews, J. P. Fraser, S. Jurek, G. A. Hamilton, K. S. Thorneloe, M. A. McAlexander, and D. E. Ingber. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl. Med. 4:159ra147, 2012.PubMedCrossRefGoogle Scholar
  71. 71.
    Huh, D., B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, and D. E. Ingber. Reconstituting organ-level lung functions on a chip. Science 328:1662–1668, 2010.PubMedCrossRefGoogle Scholar
  72. 72.
    Huong, S. P., H. Bun, J. D. Fourneron, J. P. Reynier, and V. Andrieu. Use of various models for in vitro percutaneous absorption studies of ultraviolet filters. Skin Res. Technol. 15:253–261, 2009.PubMedCrossRefGoogle Scholar
  73. 73.
    Ikeda, K., C. Ueda, K. Yamada, A. Nakamura, Y. Hatsuda, S. Kawanishi, S. Nishii, and M. Ogawa. Carrier-mediated placental transport of cimetidine and valproic acid across differentiating JEG-3 cell layers. Pharmazie 70:471–476, 2015.PubMedGoogle Scholar
  74. 74.
    Kararli, T. T. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispo. 16:351–380, 1995.CrossRefGoogle Scholar
  75. 75.
    Kasper, J. Y., L. Feiden, M. I. Hermanns, C. Bantz, M. Maskos, R. E. Unger, and C. J. Kirkpatrick. Pulmonary surfactant augments cytotoxicity of silica nanoparticles: studies on an in vitro air–blood barrier model. Beilstein J. Nanotechnol. 6:517–528, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kasper, J. Y., M. I. Hermanns, R. E. Unger, and C. J. Kirkpatrick. A responsive human triple-culture model of the air–blood barrier: incorporation of different macrophage phenotypes. J. Tissue Eng. Regen. Med. 11:1285–1297, 2017.PubMedCrossRefGoogle Scholar
  77. 77.
    Kelly, J. R., P. J. Kennedy, J. F. Cryan, T. G. Dinan, G. Clarke, and N. P. Hyland. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell. Neurosci. 9:392, 2015.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Kim, H. J., D. Huh, G. Hamilton, and D. E. Ingber. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:2165–2174, 2012.PubMedCrossRefGoogle Scholar
  79. 79.
    Kim, B. S., J. S. Lee, G. Gao, and D. W. Cho. Direct 3D cell-printing of human skin with functional transwell system. Biofabrication 9(2):025034, 2017.PubMedCrossRefGoogle Scholar
  80. 80.
    Kimura, O., Y. Kotaki, N. Hamaue, K. Haraguchi, and T. Endo. Transcellular transport of domoic acid across intestinal Caco-2 cell monolayers. Food Chem. Toxicol. 49:2167–2171, 2011.PubMedCrossRefGoogle Scholar
  81. 81.
    Kitano, T., H. Iizasa, I.-W. Hwang, Y. Hirose, T. Morita, T. Maeda, and E. Nakashima. Conditionally immortalized syncytiotrophoblast cell lines as new tools for study of the blood-placenta barrier. Biol. Pharm. Bull. 27:753–759, 2004.PubMedCrossRefGoogle Scholar
  82. 82.
    Klein, S. G., T. Serchi, L. Hoffmann, B. Blömeke, and A. C. Gutleb. An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung. Part. Fibre Toxicol. 10:31, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kloet, S. K., A. P. Walczak, J. Louisse, H. H. J. van den Berg, H. Bouwmeester, P. Tromp, R. G. Fokkink, and I. M. C. M. Rietjens. Translocation of positively and negatively charged polystyrene nanoparticles in an in vitro placental model. Toxicol. Vitr. 29:1701–1710, 2015.CrossRefGoogle Scholar
  84. 84.
    Knipp, G. T., K. L. Audus, and M. J. Soares. Nutrient transport across the placenta. Adv. Drug Deliv. Rev. 38:41–58, 1999.PubMedCrossRefGoogle Scholar
  85. 85.
    Kobayashi, T., T. Koizumi, M. Kobayashi, J. Ogura, Y. Horiuchi, Y. Kimura, A. Kondo, A. Furugen, K. Narumi, N. Takahashi, and K. Iseki. Insulin stimulates transport of organic anion compounds mediated by organic anion transporting polypeptide 2B1 in the human intestinal cell line Caco-2. Drug Metab. Pharmacokinet. 32:157–163, 2017.PubMedCrossRefGoogle Scholar
  86. 86.
    Koch, L., A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, and B. Chichkov. Skin tissue generation by laser cell printing. Biotechnol. Bioeng. 109:1855–1863, 2012.PubMedCrossRefGoogle Scholar
  87. 87.
    Kohn, J. C., D. W. Zhou, F. Bordeleau, A. L. Zhou, B. N. Mason, M. J. Mitchell, M. R. King, and C. A. Reinhart-King. Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior. Biophys. J. 108:471–478, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kraning-Rush, C. M., and C. A. Reinhart-King. Controlling matrix stiffness and topography for the study of tumor cell migration. Cell Adhes. Migr. 6(3):274–279, 2012.CrossRefGoogle Scholar
  89. 89.
    Kuehn, A., S. Kletting, C. De Souza Carvalho-Wodarz, U. Repnik, G. Griffiths, U. Fischer, E. Meese, H. Huwer, D. Wirth, T. May, N. Schneider-Daum, and C. M. Lehr. Human alveolar epithelial cells expressing tight junctions to model the air–blood barrier. Altex 33:251–260, 2016.PubMedGoogle Scholar
  90. 90.
    Kuo, C. Y., T. Guo, J. Cabrera-Luque, N. Arumugasaamy, L. Bracaglia, A. Garcia-Vivas, M. Santoro, H. Baker, J. Fisher, and P. Kim. Placental basement membrane proteins are required for effective cytotrophoblast invasion in a three-dimensional bioprinted placenta model. J. Biomed. Mater. Res. A. 106:1476–1487, 2018.PubMedCrossRefGoogle Scholar
  91. 91.
    Lager, S., and T. L. Powell. Regulation of nutrient transport across the placenta. J. Pregnancy. 2012:179827, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Lambrecht, B. N. Alveolar macrophage in the driver’s seat. Immunity 24:366–368, 2006.PubMedCrossRefGoogle Scholar
  93. 93.
    Lee, S., S.-P. Jin, Y. K. Kim, G. Y. Sung, J. H. Chung, and J. H. Sung. Construction of 3D multicellular microfluidic chip for an in vitro skin model. Biomed. Microdevices 19:22, 2017.PubMedCrossRefGoogle Scholar
  94. 94.
    Lee, J. S., R. Romero, Y. M. Han, H. C. Kim, C. J. Kim, J.-S. Hong, and D. Huh. Placenta-on-a-chip: a novel platform to study the biology of the human placenta. J. Matern. Neonatal Med. 29:1046–1054, 2016.CrossRefGoogle Scholar
  95. 95.
    Lehmann, A. D., N. Daum, M. Bur, C. M. Lehr, P. Gehr, and B. M. Rothen-Rutishauser. An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier. Eur. J. Pharm. Biopharm. 77:398–406, 2011.PubMedCrossRefGoogle Scholar
  96. 96.
    Lelu, S., M. Afadzi, S. Berg, A. Aslund, S. Torp, W. Sattler, and C. D. Davies. Primary porcine brain endothelial cells as in vitro model to study effects of ultrasound on blood–brain barrier function. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(1):281–290, 2016.PubMedCrossRefGoogle Scholar
  97. 97.
    Leonard, F., E.-M. Collnot, and C.-M. Lehr. A 3-dimensional co-culture of enterocytes, macrophages and dendritic cells to model the inflamed intestinal mucosa in vitro. Mol. Pharm. 7:2103–2119, 2010.PubMedCrossRefGoogle Scholar
  98. 98.
    Levkovitz, R., U. Zaretsky, Z. Gordon, A. J. Jaffa, and D. Elad. In vitro simulation of placental transport: part I. Biological model of the placental barrier. Placenta 34:699–707, 2013.PubMedCrossRefGoogle Scholar
  99. 99.
    Levkovitz, R., U. Zaretsky, A. J. Jaffa, M. Hod, and D. Elad. In vitro simulation of placental transport: part II. Glucose transfer across the placental barrier model. Placenta 34:708–715, 2013.PubMedCrossRefGoogle Scholar
  100. 100.
    Li, H., I. M. C. M. Rietjens, J. Louisse, M. Blok, X. Wang, L. Snijders, and B. van Ravenzwaay. Use of the ES-D3 cell differentiation assay, combined with the BeWo transport model, to predict relative in vivo developmental toxicity of antifungal compounds. Toxicol. Vitr. 29:320–328, 2015.CrossRefGoogle Scholar
  101. 101.
    Li, Y., S. Wang, R. Huang, Z. Huang, B. Hu, W. Zheng, G. Yang, and X. Jiang. Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip. Biomacromolecules 16:780–789, 2015.PubMedCrossRefGoogle Scholar
  102. 102.
    Li, N., D. Wang, Z. Sui, X. Qi, L. Ji, X. Wang, and L. Yang. Development of an improved three-dimensional in vitro intestinal mucosa model for drug absorption evaluation. Tissue Eng. Part C Methods 19:708–719, 2013.PubMedCrossRefGoogle Scholar
  103. 103.
    Liew, K. F., N. A. Hanapi, K. L. Chan, S. R. Yusof, and C. Y. Lee. Assessment of the blood–brain barrier permeability of potential neuroprotective aurones in parallel artificial membrane permeability assay and porcine brain endothelial cell models. J. Pharm. Sci. 106:502–510, 2017.PubMedCrossRefGoogle Scholar
  104. 104.
    Lippmann, E. S., A. Al-Ahmad, S. M. Azarin, S. P. Palecek, and E. V. Shusta. A retinoic acid-enhanced, multicellular human blood–brain barrier model derived from stem cell sources. Sci. Rep. 4:4160, 2015.CrossRefGoogle Scholar
  105. 105.
    Lippmann, E. S., S. M. Azarin, J. E. Kay, R. A. Nessler, H. K. Wilson, A. Al-Ahmad, S. P. Palecek, and E. V. Shusta. Derivation of blood–brain barrier endothelial cells from human pluripotent stem cells. Nat. Biotechnol. 30:783–791, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Little, M. H. Organoids: a special issue. Development 144:935–937, 2017.PubMedCrossRefGoogle Scholar
  107. 107.
    Liu, Z., J. Mi, S. Yang, M. Zhao, Y. Li, and L. Sheng. Effects of P-glycoprotein on the intestine and blood–brain barrier transport of YZG-331, a promising sedative-hypnotic compound. Eur. J. Pharmacol. 791:339–347, 2016.PubMedCrossRefGoogle Scholar
  108. 108.
    Lopalco, A., H. Ali, N. Denora, and E. Rytting. Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood–brain barrier and human placental trophoblast. Int. J. Nanomed. 10:1985–1996, 2015.Google Scholar
  109. 109.
    Lozoya-Agullo, I., I. González-Álvarez, M. González-Álvarez, M. Merino-Sanjuán, and M. Bermejo. In situ perfusion model in rat colon for drug absorption Studies: comparison with small intestine and Caco-2 cell model. J. Pharm. Sci. 104:3136–3145, 2015.PubMedCrossRefGoogle Scholar
  110. 110.
    Maherally, Z., H. L. Fillmore, S. L. Tan, S. F. Tan, S. A. Jassam, F. I. Quack, K. E. Hatherell, and G. J. Pilkington. Real-time acquisition of transendothelial electrical resistance in an all-human, in vitro, 3-dimensional, blood–brain barrier model exemplifies tight-junction integrity. FASEB J. 2017.  https://doi.org/10.1096/fj.201700162r.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Mahler, G. J., M. L. Shuler, and R. P. Glahn. Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability. J. Nutr. Biochem. 20:494–502, 2009.PubMedCrossRefGoogle Scholar
  112. 112.
    Mannelli, C., F. Ietta, A. M. Avanzati, D. Skarzynski, and L. Paulesu. Biological tools to study the effects of environmental contaminants at the feto-maternal interface. Dose. Response. 13:1559325815611902, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Mantle, J. L., L. Min, and K. H. Lee. Minimum transendothelial electrical resistance thresholds for the study of small and large molecule drug transport in a human in vitro blood–brain barrier model. Mol. Pharm. 13:4191–4198, 2016.PubMedCrossRefGoogle Scholar
  114. 114.
    Mao, P., S. Wu, J. Li, W. Fu, W. He, X. Liu, A. S. Slutsky, H. Zhang, and Y. Li. Human alveolar epithelial type II cells in primary culture. Physiol. Rep. 2015.  https://doi.org/10.14814/phy2.12288.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Markeson, D., J. M. Pleat, J. R. Sharpe, A. L. Harris, A. M. Seifalian, and S. M. Watt. Scarring, stem cells, scaffolds and skin repair. J. Tissue Eng. Regen. Med. 9:649–668, 2015.PubMedCrossRefGoogle Scholar
  116. 116.
    Mathias, N. R., J. Timoszyk, P. I. Stetsko, J. R. Megill, R. L. Smith, and D. A. Wall. Permeability characteristics of Calu-3 human bronchial epithelial cells: in vitro-in vitro correlation to predict lung absorption in rats. J. Drug Target. 10:31–40, 2002.CrossRefGoogle Scholar
  117. 117.
    Mehta, D. Signaling mechanisms regulating endothelial permeability. Physiol. Rev. 86:279–367, 2006.PubMedCrossRefGoogle Scholar
  118. 118.
    Miura, S., K. Sato, M. Kato-Negishi, T. Teshima, and S. Takeuchi. Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nat. Commun. 6:8871, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Mohamed, L. A., H. Zhu, Y. M. Mousa, E. Wang, W. Q. Qiu, and A. Kaddoumi. Amylin enhances amyloid-β peptide brain to blood efflux across the blood–brain barrier. J. Alzheimer’s Dis. 56:1087–1099, 2017.CrossRefGoogle Scholar
  120. 120.
    Monfort, A., M. Soriano-Navarro, J. M. García-Verdugo, and A. Izeta. Production of human tissue-engineered skin trilayer on a plasma-based hypodermis. J. Tissue Eng. Regen. Med. 7:479–490, 2013.PubMedCrossRefGoogle Scholar
  121. 121.
    Mori, N., Y. Morimoto, and S. Takeuchi. Skin integrated with perfusable vascular channels on a chip. Biomaterials 116:48–56, 2017.PubMedCrossRefGoogle Scholar
  122. 122.
    Mortensen, L. J., S. Jatana, R. Gelein, A. De Benedetto, K. L. De Mesy Bentley, L. A. Beck, A. Elder, and L. A. Delouise. Quantification of quantum dot murine skin penetration with UVR barrier impairment. Nanotoxicology 7:1386–1398, 2013.PubMedCrossRefGoogle Scholar
  123. 123.
    Mun, G. C., M. J. Aardema, T. Hu, B. Barnett, Y. Kaluzhny, M. Klausner, V. Karetsky, E. L. Dahl, and R. D. Curren. Further development of the EpiDerm™ 3D reconstructed human skin micronucleus (RSMN) assay. Mutat. Res. Genet. Toxicol Environ. Mutagen. 673:92–99, 2009.CrossRefGoogle Scholar
  124. 124.
    Naik, P., and L. Cucullo. In vitro blood–brain barrier models: current and perspective technologies. J. Pharm. Sci. 101(4):1337–1354, 2012.PubMedCrossRefGoogle Scholar
  125. 125.
    Nalayanda, D. D., Q. Wang, W. B. Fulton, T. H. Wang, and F. Abdullah. Engineering an artificial alveolar-capillary membrane: a novel continuously perfused model within microchannels. J. Pediatr. Surg. 45:45–51, 2010.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Nayak, P. S., Y. Wang, T. Najrana, L. M. Priolo, M. Rios, S. K. Shaw, and J. Sanchez-Esteban. Mechanotransduction via TRPV4 regulates inflammation and differentiation in fetal mouse distal lung epithelial cells. Respir. Res. 16:60, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Nichols, J. E., J. A. Niles, S. P. Vega, L. B. Argueta, A. Eastaway, and J. Cortiella. Modeling the lung: design and development of tissue engineered macro- and micro-physiologic lung models for research use. Exp. Biol. Med. 239:1135–1169, 2014.CrossRefGoogle Scholar
  128. 128.
    Noah, T. K., B. Donahue, and N. F. Shroyer. Intestinal development and differentiation. Exp. Cell Res. 317:2702–2710, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Ong, H. X., D. Traini, M. Bebawy, and P. M. Young. Ciprofloxacin is actively transported across bronchial lung epithelial cells using a calu-3 air interface cell model. Antimicrob. Agents Chemother. 57:2535–2540, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Oshima, S., C. Suzuki, R. Yajima, Y. Egawa, O. Hosoya, K. Juni, and T. Seki. The use of an artificial skin model to study transdermal absorption of drugs in inflamed skin. Biol. Pharm. Bull. 35:203–209, 2012.PubMedCrossRefGoogle Scholar
  131. 131.
    Pan, F., L. Han, Y. Zhang, Y. Yu, and J. Liu. Optimization of Caco-2 and HT29 co-culture in vitro cell models for permeability studies. Int. J. Food Sci. Nutr. 66:680–685, 2015.PubMedCrossRefGoogle Scholar
  132. 132.
    Partyka, P. P., G. A. Godsey, J. R. Galie, M. C. Kosciuk, N. K. Acharya, R. G. Nagele, and P. A. Galie. Mechanical stress regulates transport in a compliant 3D model of the blood–brain barrier. Biomaterials 115:30–39, 2017.PubMedCrossRefGoogle Scholar
  133. 133.
    Patel, H., and S. Kwon. Interplay between cytokine-induced and cyclic equibiaxial deformation-induced nitric oxide production and metalloproteases expression in human alveolar epithelial cells. Cell. Mol. Bioeng. 2:615–624, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Pattillo, R. A., and G. O. Gey. The establishment of a cell line of human hormone-synthesizing trophoblastic cells in vitro. Cancer Res. 28:1231–1236, 1968.PubMedGoogle Scholar
  135. 135.
    Peterson, L. W., and D. Artis. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14:141–153, 2014.PubMedCrossRefGoogle Scholar
  136. 136.
    Plitman Mayo, R., D. S. Charnock-Jones, G. J. Burton, and M. L. Oyen. Three-dimensional modeling of human placental terminal villi. Placenta 43:54–60, 2016.PubMedCrossRefGoogle Scholar
  137. 137.
    Pocock, K., L. Delon, V. Bala, S. Rao, C. Priest, C. Prestidge, and B. Thierry. Intestine-on-a-chip microfluidic model for efficient in vitro screening of oral chemotherapeutic uptake. ACS Biomater. Sci. Eng. 3:951–959, 2017.CrossRefGoogle Scholar
  138. 138.
    Poulsen, M. S., E. Rytting, T. Mose, and L. E. Knudsen. Modeling placental transport: correlation of in vitro BeWo cell permeability and ex vivo human placental perfusion. Toxicol. Vitr. 23:1380–1386, 2009.CrossRefGoogle Scholar
  139. 139.
    Prabhakarpandian, B., M.-C. Shen, J. B. Nichols, I. R. Mills, M. Sidoryk-Wegrzynowicz, M. Aschner, and K. Pant. SyM-BBB: a microfluidic blood brain barrier model. Lab Chip 13:1093, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Rackley, C. R., and B. R. Stripp. Building and maintaining the epithelium of the lung. J. Clin. Invest. 122:2724–2730, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Rani, P., M. Vashisht, N. Golla, S. Shandilya, S. K. Onteru, and D. Singh. Milk miRNAs encapsulated in exosomes are stable to human digestion and permeable to intestinal barrier in vitro. J. Funct. Foods 34:431–439, 2017.CrossRefGoogle Scholar
  142. 142.
    Reijnders, C. M. A., A. van Lier, S. Roffel, D. Kramer, R. J. Scheper, and S. Gibbs. Development of a full-thickness human skin equivalent in vitro model derived from TERT-immortalized keratinocytes and fibroblasts. Tissue Eng. Part A 21:2448–2459, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Ren, H., N. P. Birch, and V. Suresh. An optimised human cell culture model for alveolar epithelial transport. PLoS ONE 11:e0165225, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Rissmann, R., M. H. M. Oudshoorn, W. E. Hennink, M. Ponec, and J. A. Bouwstra. Skin barrier disruption by acetone: observations in a hairless mouse skin model. Arch. Dermatol. Res. 301:609–613, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Rodrigues, F., C. Pereira, F. B. Pimentel, R. C. Alves, M. Ferreira, B. Sarmento, M. H. Amaral, and M. B. P. P. Oliveira. Are coffee silverskin extracts safe for topical use? An in vitro and in vivo approach. Ind. Crops Prod. 63:167–174, 2015.CrossRefGoogle Scholar
  146. 146.
    Rothen-Rutishauser, B. M., S. G. Kiama, and P. Gehr. A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am. J. Respir. Cell Mol. Biol. 32:281–289, 2005.PubMedCrossRefGoogle Scholar
  147. 147.
    Sakolish, C. M., M. B. Esch, J. J. Hickman, M. L. Shuler, and G. J. Mahler. Modeling barrier tissues in vitro: methods, achievements, and challenges. EBioMedicine. 5:30–39, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Sastry, B. V. R. Techniques to study human placental transport. Adv. Drug Deliv. Rev. 38(1):17–39, 1999.PubMedCrossRefGoogle Scholar
  149. 149.
    Scheuplein, R. J. Mechanism of percutaneous absorption. II. Transient diffusion and the relative importance of various routes of skin penetration. J. Invest. Dermatol. 48:79–88, 1967.PubMedCrossRefGoogle Scholar
  150. 150.
    Shi, D., L. Sun, G. Mi, L. Sheikh, S. Bhattacharya, S. Nayar, and T. J. Webster. Controlling ferrofluid permeability across the blood–brain barrier model. Nanotechnology 25:075101, 2014.PubMedCrossRefGoogle Scholar
  151. 151.
    Siupka, P., M. N. Hersom, K. Lykke-Hartmann, K. B. Johnsen, L. B. Thomsen, T. L. Andresen, T. Moos, N. J. Abbott, B. Brodin, and M. S. Nielsen. Bidirectional apical–basal traffic of the cation-independent mannose-6-phosphate receptor in brain endothelial cells. J. Cereb. Blood Flow Metab. 2017.  https://doi.org/10.1177/0271678x17700665.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Song, Y., D. Du, L. Li, J. Xu, P. Dutta, and Y. Lin. In vitro study of receptor-mediated silica nanoparticles delivery across blood–brain barrier. ACS Appl. Mater. Interfaces. 9:20410–20416, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Song, D., J. Guo, F. Han, W. Zhang, Y. Wang, and Y. Wang. Establishment of an in vitro model of the human placental barrier by placenta slice culture and ussing chamber. Biosci. Biotechnol. Biochem. 77:1030–1034, 2013.PubMedCrossRefGoogle Scholar
  154. 154.
    Stins, M. F., J. Badger, and K. Sik. Kim. Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb. Pathog. 30:19–28, 2001.PubMedCrossRefGoogle Scholar
  155. 155.
    Sugihara, H., S. Toda, N. Yonemitsu, and K. Watanabe. Effects of fat cells on keratinocytes and fibroblasts in a reconstructed rat skin model using collagen gel matrix culture. Br. J. Dermatol. 144:244–253, 2001.PubMedCrossRefGoogle Scholar
  156. 156.
    Takaku, T., H. Nagahori, Y. Sogame, and T. Takagi. Quantitative structure-activity relationship model for the fetal-maternal blood concentration ratio of chemicals in humans. Biol. Pharm. Bull. 38:930–934, 2015.PubMedCrossRefGoogle Scholar
  157. 157.
    Tang, Z., V. M. Abrahams, G. Mor, and S. Guller. Placental Hofbauer cells and complications of pregnancy. Ann. N. Y. Acad. Sci. 1221:103–108, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Teodorescu, F., G. Quéniat, C. Foulon, M. Lecoeur, A. Barras, S. Boulahneche, M. S. Medjram, T. Hubert, A. Abderrahmani, R. Boukherroub, and S. Szunerits. Transdermal skin patch based on reduced graphene oxide: a new approach for photothermal triggered permeation of ondansetron across porcine skin. J. Control. Release 245:137–146, 2017.PubMedCrossRefGoogle Scholar
  159. 159.
    Trottier, V., G. Marceau-Fortier, L. Germain, C. Vincent, and J. Fradette. IFATS collection: using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells 26:2713–2723, 2008.PubMedCrossRefGoogle Scholar
  160. 160.
    Van Bocxlaer, K., V. Yardley, S. Murdan, and S. L. Croft. Drug permeation and barrier damage in Leishmania-infected mouse skin. J. Antimicrob. Chemother. 71:1578–1585, 2016.PubMedCrossRefGoogle Scholar
  161. 161.
    van den Broek, L. J., L. I. J. C. Bergers, C. M. A. Reijnders, and S. Gibbs. Progress and future prospectives in skin-on-chip development with emphasis on the use of different cell types and technical challenges. Stem Cell Rev. Reports 13:418–429, 2017.CrossRefGoogle Scholar
  162. 162.
    Villenave, R., S. Q. Wales, T. Hamkins-Indik, E. Papafragkou, J. C. Weaver, T. C. Ferrante, A. Bahinski, C. A. Elkins, M. Kulka, and D. E. Ingber. Human gut-on-a-chip supports polarized infection of coxsackie B1 virus in vitro. PLoS ONE 12:e0169412, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Wang, Y. I., H. E. Abaci, and M. L. Shuler. Microfluidic blood–brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol. Bioeng. 114:184–194, 2017.PubMedCrossRefGoogle Scholar
  164. 164.
    Wang, Y., N. Wang, B. Cai, G. Y. Wang, J. Li, and X. X. Piao. In vitro model of the blood–brain barrier established by co-culture of primary cerebral microvascular endothelial and astrocyte cells. Neural Regen. Res. 10:2011–2017, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Ward, H. E., and T. E. Nicholas. Alveolar type I And type II cells. Aust. N. Z J. Med. 14:731–734, 1984.PubMedCrossRefGoogle Scholar
  166. 166.
    Wice, B., D. Menton, H. Geuze, and A. L. Schwartz. Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation in vitro. Exp. Cell Res. 186:306–316, 1990.PubMedCrossRefGoogle Scholar
  167. 167.
    Wills, J. W., N. Hondow, A. D. Thomas, K. E. Chapman, D. Fish, T. G. Maffeis, M. W. Penny, R. A. Brown, G. J. S. Jenkins, A. P. Brown, P. A. White, and S. H. Doak. Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDerm™). Part. Fibre Toxicol. 13:1–21, 2016.Google Scholar
  168. 168.
    Woodworth, G. F., G. P. Dunn, E. A. Nance, J. Hanes, and H. Brem. Emerging Insights into barriers to effective brain tumor therapeutics. Front. Oncol. 4:1–14, 2014.CrossRefGoogle Scholar
  169. 169.
    Wu, X.-W., W. Wei, X.-W. Yang, Y.-B. Zhang, W. Xu, Y.-F. Yang, G.-Y. Zhong, H.-N. Liu, and S.-L. Yang. Anti-inflammatory phenolic acid esters from the roots and rhizomes of Notopterygium incisium and their permeability in the human Caco-2 monolayer cell model. Molecules 22:935, 2017.CrossRefGoogle Scholar
  170. 170.
    Wufuer, M., G. H. Lee, W. Hur, B. Jeon, B. J. Kim, T. H. Choi, and S. H. Lee. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Sci. Rep. 6:1–12, 2016.CrossRefGoogle Scholar
  171. 171.
    Yu, Y., M. Wang, K. Zhang, D. Yang, Y. Zhong, J. An, B. Lei, and X. Zhang. The transepithelial transport mechanism of polybrominated diphenyl ethers in human intestine determined using a Caco-2 cell monolayer. Environ. Res. 154:93–100, 2017.PubMedCrossRefGoogle Scholar
  172. 172.
    Zeng, L., X. Yang, H. Li, Y. Li, C. Yang, W. Gu, Y. Zhou, J. Du, H. Wang, J. Sun, D. Wen, and J. Jiang. The cellular kinetics of lung alveolar epithelial cells and its relationship with lung tissue repair after acute lung injury. Respir. Res. 17:164, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Zhang, Z., and B. B. Michniak-Kohn. Tissue engineered human skin equivalents. Pharmaceutics 4:26–41, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Zhang, Y.-H., Z. Xia, L. Yan, and S. Liu. Prediction of placental barrier permeability: a model based on partial least squares variable selection procedure. Molecules 20:8270–8286, 2015.PubMedCrossRefGoogle Scholar
  175. 175.
    Zhao, J., Z. Zeng, J. Sun, Y. Zhang, D. Li, X. Zhang, M. Liu, and X. Wang. A novel model of P-glycoprotein inhibitor screening using human small intestinal organoids. Basic Clin. Pharmacol. Toxicol. 120:250–255, 2017.PubMedCrossRefGoogle Scholar
  176. 176.
    Zietek, T., E. Rath, D. Haller, and H. Daniel. Intestinal organoids for assessing nutrient transport, sensing and incretin secretion. Sci. Rep. 5:16831, 2015.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Navein Arumugasaamy
    • 1
    • 2
    • 3
  • Javier Navarro
    • 1
    • 2
  • J. Kent Leach
    • 4
  • Peter C. W. Kim
    • 3
    • 5
  • John P. Fisher
    • 1
    • 2
    • 3
  1. 1.Fischell Department of BioengineeringUniversity of Maryland, College ParkCollege ParkUSA
  2. 2.Center for Engineering Complex TissuesUniversity of Maryland, College ParkCollege ParkUSA
  3. 3.Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health SystemWashingtonUSA
  4. 4.Department of Biomedical EngineeringUniversity of California, DavisDavisUSA
  5. 5.School of Medicine and Health SciencesThe George Washington UniversityWashingtonUSA

Personalised recommendations