Annals of Biomedical Engineering

, Volume 47, Issue 1, pp 243–256 | Cite as

Stochastic Resonance with Dynamic Compression Improves the Growth of Adult Chondrocytes in Agarose Gel Constructs

  • Joanna F. Weber
  • Loraine L.Y. Chiu
  • Stefan Balko
  • Stephen D. WaldmanEmail author


Dynamic mechanical stimulation has been an effective method to improve the growth of tissue engineering cartilage constructs derived from immature cells. However, when more mature cell populations are used, results are often variable due to the differing responses of these cells to external stimuli. This can be especially detrimental in the case of mechanical loading. In previous studies, multi-modal mechanical stimulation in the form of stochastic resonance was shown to be effective at improving the growth of young bovine chondrocytes. Thus, the aim of this study was to investigate the short-term and long-term effects of stochastic resonance on two groups of bovine chondrocytes, adult (> 30 month) and juvenile (~ 18 months). While the juvenile cells outperformed the adult cells in terms of their anabolic response to loading, combined mechanical loading for both age groups resulted in greater matrix synthesis compared to compressive loading alone. In the adult cells, potential pathological tissue formation was evident with the presence of cell clustering. However, the presence of broad-band mechanical vibrations (alone or with compressive loading) appeared to mitigate this response and allow these cells to attain a growth response similar to the juvenile, unstimulated cells. Therefore, the use of stochastic resonance appears to show promise as a method to improve the formation and properties of tissue engineered cartilage constructs, irrespective of cell age.


Cartilage tissue engineering Chondrocytes Mechanical stimulation Vibration Stochastic resonance Adult cells 



Funding for this work was provided by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Conflict of interest


Supplementary material

10439_2018_2123_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)


  1. 1.
    Akizuki, S., V. C. Mow, F. Müller, J. C. Pita, D. S. Howell, and D. H. Manicourt. Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J. Orthop. Res. 4:379–392, 1986.CrossRefGoogle Scholar
  2. 2.
    Alexopoulos, L. G., I. Youn, P. Bonaldo, and F. Guilak. Developmental and osteoarthritic changes in Col6a1-knockout mice: biomechanics of type VI collagen in the cartilage pericellular matrix. Arthritis Rheum. 60:771–779, 2009.CrossRefGoogle Scholar
  3. 3.
    Arikawa-Hirasawa, E., W. R. Wilcox, and Y. Yamada. Dyssegmental dysplasia, Silverman–Handmaker type: unexpected role of perlecan in cartilage development. Am. J. Med. Genet. 106:254–257, 2001.CrossRefGoogle Scholar
  4. 4.
    Barbero, A., S. Grogan, D. Schäfer, M. Heberer, P. Mainil-Varlet, and I. Martin. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthr. Cartil. 12:476–484, 2004.CrossRefGoogle Scholar
  5. 5.
    Bloch-Salisbury, E., P. Indic, F. Bednarek, and D. Paydarfar. Stabilizing immature breathing patterns of preterm infants using stochastic mechanosensory stimulation. J. Appl. Physiol. 107:1017–1027, 2009.CrossRefGoogle Scholar
  6. 6.
    Brady, M. A., S. D. Waldman, and C. R. Ethier. The application of multiple biophysical cues to engineer functional neo-cartilage for treatment of osteoarthritis (part I: cellular response). Tissue Eng. Part B Rev. 21:1–19, 2015.CrossRefGoogle Scholar
  7. 7.
    Brandt, K., M. Doherty, and L. Lohmander. Composition and structure of articular cartilage. In: Osteoarthritis, edited by K. Brandt, M. Doherty, and L. Lohmander. New York: Oxford University Press, 1998, pp. 110–111.Google Scholar
  8. 8.
    Brighton, C. T., W. Wang, and C. C. Clark. The effect of electrical fields on gene and protein expression in human osteoarthritic cartilage explants. J. Bone Jt. Surg. Am. 90:833–848, 2008.CrossRefGoogle Scholar
  9. 9.
    Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, J. H. Kimura, and E. B. Hunziker. Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10:745–758, 1992.CrossRefGoogle Scholar
  10. 10.
    Byers, B. A., R. L. Mauck, I. E. Chiang, and R. S. Tuan. Transient exposure to transforming growth factor beta 3 under serum-free conditions enhances the biomechanical and biochemical maturation of tissue-engineered cartilage. Tissue Eng. Part A 14:1821–1834, 2008.CrossRefGoogle Scholar
  11. 11.
    Carter, D. R., G. S. Beaupre, M. Wong, R. L. Smith, T. P. Andriacchi, and D. J. Schurman. The mechanobiology of articular cartilage development and degeneration. Clin. Orthop. Relat. Res. 427:S69–S77, 2004.CrossRefGoogle Scholar
  12. 12.
    Castillo, A. B., I. Alam, S. M. Tanaka, J. Levenda, J. Li, S. J. Warden, and C. H. Turner. Low-amplitude, broad-frequency vibration effects on cortical bone formation in mice. Bone 39:1087–1096, 2006.CrossRefGoogle Scholar
  13. 13.
    Caterson, B., and D. A. Lowther. Changes in the metabolism of the proteoglycans from sheep articular cartilage in response to mechanical stress. Biochim. Biophys. Acta Gen. Subj. 540:412–422, 1978.CrossRefGoogle Scholar
  14. 14.
    Fan, J. C. Y., and S. D. Waldman. The effect of intermittent static biaxial tensile strains on tissue engineered cartilage. Ann. Biomed. Eng. 38:1672–1682, 2010.CrossRefGoogle Scholar
  15. 15.
    Farnsworth, N. L., L. R. Antunez, and S. J. Bryant. Dynamic compressive loading differentially regulates chondrocyte anabolic and catabolic activity with age. Biotechnol. Bioeng. 110:2046–2057, 2013.CrossRefGoogle Scholar
  16. 16.
    Forsyth, C. B., A. Cole, G. Murphy, J. L. Bienias, H.-J. Im, and R. F. Loeser. Increased matrix metalloproteinase-13 production with aging by human articular chondrocytes in response to catabolic stimuli. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 60:1118–1124, 2005.CrossRefGoogle Scholar
  17. 17.
    Hung, C. T., R. L. Mauck, C. C.-B. Wang, E. G. Lima, and G. A. Ateshian. A paradigm for functional tissue engineering of articular cartilage via applied physiologic deformational loading. Ann. Biomed. Eng. 32:35–49, 2004.CrossRefGoogle Scholar
  18. 18.
    Kaupp, J. A., and S. D. Waldman. Mechanical vibrations increase the proliferation of articular chondrocytes in high-density culture. Proc. Inst. Mech. Eng. Part H 222:695–703, 2008.CrossRefGoogle Scholar
  19. 19.
    Kaupp, J. A., J. F. Weber, and S. D. Waldman. Mechanical stimulation of chondrocyte-agarose hydrogels. J. Vis. Exp. 2012. Scholar
  20. 20.
    Keene, D. R., E. Engvall, and R. W. Glanville. Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network. J. Cell Biol. 107:1995–2006, 1988.CrossRefGoogle Scholar
  21. 21.
    Kiviranta, I., J. Jurvelin, M. Tammi, A.-M. SääMäunen, and H. J. Helminen. Weight bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joints of young beagle dogs. Arthritis Rheum 30:801–809, 1987.CrossRefGoogle Scholar
  22. 22.
    Knudson, C. B., and W. Knudson. Cartilage proteoglycans. Semin. Cell Dev. Biol. 12:69–78, 2001.CrossRefGoogle Scholar
  23. 23.
    Lee, D. A., and M. M. Knight. Mechanical loading of chondrocytes embedded in 3D constructs: in vitro methods for assessment of morphological and metabolic response to compressive strain. Methods Mol. Med. 100:307–324, 2004.Google Scholar
  24. 24.
    Leung, M. K., L. I. Fessler, D. B. Greenberg, and J. H. Fessler. Separate amino and carboxyl procollagen peptidases in chick embryo tendon. J. Biol. Chem. 254:224–232, 1979.Google Scholar
  25. 25.
    Martin, J. A., S. M. Ellerbroek, and J. A. Buckwalter. Age-related decline in chondrocyte response to insulin-like growth factor-I: the role of growth factor binding proteins. J. Orthop. Res. 15:491–498, 1997.CrossRefGoogle Scholar
  26. 26.
    Mauck, R. L., and M. A. Soltz. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomed. Eng. 122:252–260, 2000.Google Scholar
  27. 27.
    Mesa, J. M., V. Zaporojan, C. Weinand, T. S. Johnson, L. Bonassar, M. A. Randolph, M. J. Yaremchuk, and P. E. Butler. Tissue engineering cartilage with aged articular chondrocytes in vivo. Plast. Reconstr. Surg. 118:41–49, 2006.CrossRefGoogle Scholar
  28. 28.
    Ongaro, A., A. Pellati, F. F. Masieri, A. Caruso, S. Setti, R. Cadossi, R. Biscione, L. Massari, M. Fini, and M. De Mattei. Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants. Bioelectromagnetics 32:543–551, 2011.CrossRefGoogle Scholar
  29. 29.
    Quinn, T. M., P. Schmid, E. B. Hunziker, and A. J. Grodzinsky. Proteoglycan deposition around chondrocytes in agarose culture: construction of a physical and biological interface for mechanotransduction in cartilage. Amsterdam: IOS Press, 2002.Google Scholar
  30. 30.
    Söder, S., L. Hambach, R. Lissner, T. Kirchner, and T. Aigner. Ultrastructural localization of type VI collagen in normal adult and osteoarthritic human articular cartilage. Osteoarthr. Cartil. 10:464–470, 2002.CrossRefGoogle Scholar
  31. 31.
    Tanaka, S. M., J. Li, R. L. Duncan, H. Yokota, D. B. Burr, and C. H. Turner. Effects of broad frequency vibration on cultured osteoblasts. J. Biomech. 36:73–80, 2003.CrossRefGoogle Scholar
  32. 32.
    Thonar, E., L. Lohmander, J. Kimura, S. Fellini, M. Yanagishita, and V. Hascall. Biosynthesis of O-linked oligosaccharides on proteoglycans by chondrocytes from the swarm rat chondrosarcoma. J. Biol. Chem. 258:11564–11570, 1983.Google Scholar
  33. 33.
    Tran-Khanh, N., C. D. Hoemann, M. D. McKee, J. E. Henderson, and M. D. Buschmann. Aged bovine chondrocytes display a diminished capacity to produce a collagen-rich, mechanically functional cartilage extracellular matrix. J. Orthop. Res. 23:1354–1362, 2005.CrossRefGoogle Scholar
  34. 34.
    Waldman, S., and D. Couto. Multi-axial mechanical stimulation of tissue engineered cartilage: review. Eur. Cell. Mater. 13:66–73, 2007.CrossRefGoogle Scholar
  35. 35.
    Waldman, S. D., C. G. Spiteri, M. D. Grynpas, R. M. Pilliar, and R. A. Kandel. Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage. Tissue Eng. 10:1323–1331, 2004.CrossRefGoogle Scholar
  36. 36.
    Weber, J. F., and S. D. Waldman. Calcium signaling as a novel method to optimize the biosynthetic response of chondrocytes to dynamic mechanical loading. Biomech. Model. Mechanobiol. 13:1387–1397, 2014.CrossRefGoogle Scholar
  37. 37.
    Weber, J. F., and S. D. Waldman. Stochastic resonance is a method to improve the biosynthetic response of chondrocytes to mechanical stimulation. J. Orthop. Res. 34:231–239, 2016.CrossRefGoogle Scholar
  38. 38.
    Wernike, E., Z. Li, M. Alini, and S. Grad. Effect of reduced oxygen tension and long-term mechanical stimulation on chondrocyte-polymer constructs. Cell Tissue Res. 331:473–483, 2008.CrossRefGoogle Scholar
  39. 39.
    Wilusz, R. E., L. E. DeFrate, and F. Guilak. A biomechanical role for perlecan in the pericellular matrix of articular cartilage. Matrix Biol. 31:320–327, 2012.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of Engineering & Architectural ScienceRyerson UniversityTorontoCanada
  2. 2.Li Ka Shing Knowledge InstituteSt. Michael’s HospitalTorontoCanada

Personalised recommendations