Advertisement

Annals of Biomedical Engineering

, Volume 47, Issue 1, pp 75–84 | Cite as

Sinus Hemodynamics Variation with Tilted Transcatheter Aortic Valve Deployments

  • Hoda Hatoum
  • Jennifer Dollery
  • Scott M. Lilly
  • Juan A. Crestanello
  • Lakshmi Prasad Dasi
Article

Abstract

Leaflet thrombosis is a complication associated with transcatheter aortic valve (TAV) replacement (TAVR) correlated with sinus flow stasis. Sinus hemodynamics are important because they dictate shear stress and washout necessary to avoid stasis on TAV leaflets. Sinus flow is controlled by TAV axial deployment position but little is known regarding TAV axis misalignment effect. This study aims to elucidate TAV angular misalignment with respect to aortic root axis effect on sinus flow stasis potentially leading to leaflet thrombosis. Sinus hemodynamics were assessed in vitro using particle-image velocimetry in three different angular misalignments with respect to aorta axis: untilted, tilted away from the sinus and tilted towards sinus. A 26 mm Edwards SAPIEN3 was implanted in a 3D printed model of an anatomically realistic aortic root. TAV hemodynamics, sinus vortex tracking, leaflet shear stress probability density functions, and sinus blood time to washout were calculated. While pressure gradients differed insignificantly, blood velocity and vorticity decreased significantly in both tilted cases sinuses. Shear stress probability near the leaflet decreases with tilt indicating stasis. TAV tilted away from the sinus is the most unfavorable scenario with poor washout. TAV axial misalignment adds to factors list that could influence leaflet thrombosis risk through modifying sinus hemodynamics and washout.

Keywords

Transcatheter aortic valves TAVR Axial tilt Sinus hemodynamics Thrombosis TAV misalignment 

Notes

Acknowledgments

The research done was partly supported by National Institutes of Health (NIH) under Award Number R01HL119824.

Conflict of interest

Dr. Dasi reports having a patent application filed on novel polymeric valves, vortex generators, and superhydrophobic/superomniphobic heart valves, and Dr. Crestanello reports having grants from Medtronic, Boston Scientific and Abbot in addition to being part of the advisory board for Medtronic. No other conflicts were reported.

References

  1. 1.
    Bark, D. L., A. N. Para, and D. N. Ku. Correlation of thrombosis growth rate to pathological wall shear rate during platelet accumulation. Biotechnol. Bioeng. 109:2642–2650, 2012.CrossRefGoogle Scholar
  2. 2.
    Berk, B. C., J. I. Abe, W. Min, J. Surapisitchat, and C. Yan. Endothelial atheroprotective and anti-inflammatory mechanisms. Ann. N. Y. Acad. Sci. 947:93–111, 2001.CrossRefGoogle Scholar
  3. 3.
    Casa, L. D., D. H. Deaton, and D. N. Ku. Role of high shear rate in thrombosis. J. Vasc. Surg. 61:1068–1080, 2015.CrossRefGoogle Scholar
  4. 4.
    Chakravarty, T., L. Søndergaard, J. Friedman, O. De Backer, D. Berman, K. F. Kofoed, H. Jilaihawi, T. Shiota, Y. Abramowitz, and T. H. Jørgensen. Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study. Lancet 389(10087):2383–2392, 2017.CrossRefGoogle Scholar
  5. 5.
    Chandra, S., N. M. Rajamannan, and P. Sucosky. Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech. Model Mechanobiol. 11:1085–1096, 2012.CrossRefGoogle Scholar
  6. 6.
    Cunningham, K. S., and A. I. Gotlieb. The role of shear stress in the pathogenesis of atherosclerosis. Lab. Investig. 85:9, 2005.CrossRefGoogle Scholar
  7. 7.
    Dasi, L. P., H. Hatoum, A. Kheradvar, R. Zareian, S. H. Alavi, W. Sun, C. Martin, T. Pham, Q. Wang, and P. A. Midha. On the mechanics of transcatheter aortic valve replacement. Ann. Biomed. Eng. 45:310–331, 2017.CrossRefGoogle Scholar
  8. 8.
    Dhanak, M., and B. D. Bernardinis. The evolution of an elliptic vortex ring. J. Fluid Mech. 109:189–216, 1981.CrossRefGoogle Scholar
  9. 9.
    Didden, N. On the formation of vortex rings: rolling-up and production of circulation. Z. Angew. Math. Phys. (ZAMP) 30:101–116, 1979.CrossRefGoogle Scholar
  10. 10.
    Forleo, M., and L. P. Dasi. Effect of hypertension on the closing dynamics and lagrangian blood damage index measure of the B-Datum Regurgitant Jet in a bileaflet mechanical heart valve. Ann. Biomed. Eng. 42:110–122, 2014.CrossRefGoogle Scholar
  11. 11.
    Gilard, M., H. Eltchaninoff, B. Iung, P. Donzeau-Gouge, K. Chevreul, J. Fajadet, P. Leprince, A. Leguerrier, M. Lievre, and A. Prat. Registry of transcatheter aortic-valve implantation in high-risk patients. N. Engl. J. Med. 366:1705–1715, 2012.CrossRefGoogle Scholar
  12. 12.
    Hatoum, H., J. A. Crestanello, and L. P. Dasi. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N. Engl. J. Med. 374:1591–1591, 2016.Google Scholar
  13. 13.
    Hatoum, H., J. Dollery, S. M. Lilly, J. Crestanello, and L. P. Dasi. Impact of patient morphologies on sinus flow stasis in transcatheter aortic valve replacement: an in vitro study. J. Thorac. Cardiovasc. Surg. 2018.Google Scholar
  14. 14.
    Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Implantation depth and rotational orientation effect on valve-in-valve hemodynamics and sinus flow. Ann. Thorac. Surg. 2018.Google Scholar
  15. 15.
    Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Effect of severe bioprosthetic valve tissue ingrowth and inflow calcification on valve-in-valve performance. J. Biomech. 74:171–179, 2018.CrossRefGoogle Scholar
  16. 16.
    Hatoum, H., F. Heim, and L. P. Dasi. Stented valve dynamic behavior induced by polyester fiber leaflet material in transcatheter aortic valve devices. J. Mech. Behav. Biomed. Mater. 86:232–239, 2018.CrossRefGoogle Scholar
  17. 17.
    Hatoum, H., B. L. Moore, and L. P. Dasi. On the significance of systolic flow waveform on aortic valve energy loss. Ann. Biomed. Eng. 2018.Google Scholar
  18. 18.
    Hatoum, H., B. L. Moore, P. Maureira, J. Dollery, J. A. Crestanello, and L. P. Dasi. Aortic sinus flow stasis likely in valve-in-valve transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 154(1):32–43, 2017.CrossRefGoogle Scholar
  19. 19.
    Hatoum, H., B. L. Moore, P. Maureira, J. Dollery, J. A. Crestanello, and L. P. Dasi. Aortic sinus flow stasis likely in valve-in-valve transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 154(32–43):e1, 2017.Google Scholar
  20. 20.
    Hatoum, H., A. Yousefi, S. Lilly, P. Maureira, J. Crestanello, and L. P. Dasi. An in-vitro evaluation of turbulence after transcatheter aortic valve implantation. J Thorac. Cardiovasc. Surg. 2018.Google Scholar
  21. 21.
    Kasel, A. M., S. Cassese, S. Bleiziffer, M. Amaki, R. T. Hahn, A. Kastrati, and P. P. Sengupta. Standardized imaging for aortic annular sizing. JACC 6:249–262, 2013.Google Scholar
  22. 22.
    Klotz, S., M. Scharfschwerdt, D. Richardt, and H. H. Sievers. Failed valve-in-valve transcatheter aortic valve implantation. JACC 5:591–592, 2012.Google Scholar
  23. 23.
    Kumar, G., V. Raghav, S. Lerakis, and A. P. Yoganathan. High transcatheter valve replacement may reduce washout in the aortic sinuses: an in-vitro study. J. Heart Valve Dis. 24:22–29, 2015.Google Scholar
  24. 24.
    Lerakis, S., S. S. Hayek, and P. S. Douglas. Paravalvular aortic leak after transcatheter aortic valve replacement. Circulation 127:397–407, 2013.CrossRefGoogle Scholar
  25. 25.
    Makkar, R. R., G. Fontana, H. Jilaihawi, T. Chakravarty, K. F. Kofoed, O. De Backer, F. M. Asch, C. E. Ruiz, N. T. Olsen, and A. Trento. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N. Engl. J. Med. 373:2015–2024, 2015.CrossRefGoogle Scholar
  26. 26.
    Mangione, F. M., T. Jatene, A. Gonçalves, G. A. Fishbein, R. N. Mitchell, M. P. Pelletier, T. Kaneko, P. B. Shah, C. B. Nyman, and D. Shook. Leaflet thrombosis in surgically explanted or post-mortem TAVR valves. JACC 1:82–85, 2017.Google Scholar
  27. 27.
    Maragiannis, D., M. S. Jackson, S. R. Igo, R. C. Schutt, P. Connell, J. Grande-Allen, C. M. Barker, S. M. Chang, M. J. Reardon, and W. A. Zoghbi. Replicating patient-specific severe aortic valve stenosis with functional 3D modeling. Circulation 8:e003626, 2015.Google Scholar
  28. 28.
    Midha, P. A., V. Raghav, I. Okafor, and A. P. Yoganathan. The effect of valve-in-valve implantation height on sinus flow. Ann. Biomed. Eng. 1–8, 2016.Google Scholar
  29. 29.
    Mittal, R., P. Rampunggoon, and H. Udaykumar. Interaction of a synthetic jet with a flat plate boundary layer. AIAA Pap. 2773:1, 2001.Google Scholar
  30. 30.
    Moore, B. L., and L. P. Dasi. Coronary flow impacts aortic leaflet mechanics and aortic sinus hemodynamics. Ann. Biomed. Eng. 43:2231–2241, 2015.CrossRefGoogle Scholar
  31. 31.
    Peacock, J. A. An in vitro study of the onset of turbulence in the sinus of Valsalva. Circ. Res. 67:448–460, 1990.CrossRefGoogle Scholar
  32. 32.
    Saw, S. N., C. Dawn, A. Biswas, C. N. Z. Mattar, and C. H. Yap. Characterization of the in vivo wall shear stress environment of human fetus umbilical arteries and veins. Biomech. Model. Mechanobiol. 16:197–211, 2017.CrossRefGoogle Scholar
  33. 33.
    Toggweiler, S., K. Schmidt, M. Paul, F. Cuculi, R. Kobza, and P. Jamshidi. Valve thrombosis 3 years after transcatheter aortic valve implantation. Int. J. Cardiol. 207:122–124, 2016.CrossRefGoogle Scholar
  34. 34.
    Trantalis, G., K. Toutouzas, G. Latsios, A. Synetos, S. Brili, D. Logitsi, V. Penesopoulou, and D. Tousoulis. TAVR and thrombosis. JACC 10:86–87, 2017.Google Scholar
  35. 35.
    Traub, O., and B. C. Berk. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol. 18:677–685, 1998.CrossRefGoogle Scholar
  36. 36.
    Vahidkhah, K., and A. N. Azadani. Supra-annular valve-in-valve implantation reduces blood stasis on the transcatheter aortic valve leaflets. J. Biomech. 58:114–122, 2017.CrossRefGoogle Scholar
  37. 37.
    Walker, J., C. Smith, A. Cerra, and T. Doligalski. The impact of a vortex ring on a wall. J. Fluid Mech. 181:99–140, 1987.CrossRefGoogle Scholar
  38. 38.
    Wu, M., Y. Kouchi, Y. Onuki, Q. Shi, H. Yoshida, S. Kaplan, R. F. Viggers, R. Ghali, and L. R. Sauvage. Effect of differential shear stress on platelet aggregation, surface thrombosis, and endothelialization of bilateral carotid-femoral grafts in the dog. J. Vasc. Surg. 22:382–390, 1995; (discussion 390–392).CrossRefGoogle Scholar
  39. 39.
    Yanagisawa, R., K. Hayashida, Y. Yamada, M. Tanaka, F. Yashima, T. Inohara, T. Arai, T. Kawakami, Y. Maekawa, and H. Tsuruta. Incidence, predictors, and mid-term outcomes of possible leaflet thrombosis after TAVR. JACC 10:1–11, 2017.Google Scholar
  40. 40.
    Yap, C. H., X. Liu, and K. Pekkan. Characterizaton of the vessel geometry, flow mechanics and wall shear stress in the great arteries of wildtype prenatal mouse. PLoS ONE 9:e86878, 2014.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Hoda Hatoum
    • 1
  • Jennifer Dollery
    • 2
  • Scott M. Lilly
    • 3
  • Juan A. Crestanello
    • 2
  • Lakshmi Prasad Dasi
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Division of Cardiac SurgeryThe Ohio State UniversityColumbusUSA
  3. 3.Division of Cardiovascular MedicineThe Ohio State UniversityColumbusUSA

Personalised recommendations