Annals of Biomedical Engineering

, Volume 47, Issue 1, pp 162–173 | Cite as

Corrosion of 3D-Printed Orthopaedic Implant Materials

  • Dominic Mah
  • Matthew Henry PelletierEmail author
  • Vedran Lovric
  • William Robert Walsh


3D-printing technologies such as electron beam melting (EBM) have allowed for patient-specific orthopaedic implants, however differences generated from the fabrication process may alter the corrosion properties of Ti6Al4V implants. This study evaluated the corrosion characteristics of EBM-fabricated Ti6Al4V, alongside any linked microstructural and surface changes. EBM-fabricated Ti6Al4V and wrought Ti6Al4V specimens (n = 10 per group) underwent microstructural and surface characterisation before and after corrosion testing. Cyclic potentiodynamic polarisation of specimens was conducted in accordance with ASTM Standard F2129-17. The degree of corrosion damage was subsequently assessed via qualitative and quantitative measures. EBM-fabricated Ti6Al4V demonstrated a higher proportion of β phases and greater surface roughness, compared to wrought Ti6Al4V. Significant differences were observed for all corrosion parameters between the two groups. The lower breakdown potentials (Eb) for EBM-fabricated Ti6Al4V (2.035 V), compared to wrought Ti6Al4V (3.667 V), indicate a lower resistance to pitting corrosion. A greater resultant spread, and severity of corrosion damage was noted on wrought Ti6Al4V. An inferior in vitro corrosion resistance was observed for EBM-fabricated Ti6Al4V. Without post-processing, the rougher surface and differences in microstructure are likely to contribute to this. This suggests potential clinical implications upon in vivo implantation, although corrosion measures remain above recommended minimums.


Electron beam melting Titanium alloy Pedicle screw Corrosion In vitro study 



The authors declare that they have no conflict of interest.


  1. 1.
    Abdeen, D. H., and B. R. Palmer. Corrosion evaluation of Ti-6Al-4V parts produced with electron beam melting machine. Rapid Prototyp. J. 22(2):322–329, 2016.Google Scholar
  2. 2.
    Abdeen, D. H., and B. R. Palmer. Effect of processing parameters of electron beam melting machine on properties of Ti-6Al-4V parts. Rapid Prototyp. J. 22(3):609–620, 2016.Google Scholar
  3. 3.
    Aksakal, B., Ö. Yildirim, and H. Gul. Metallurgical failure analysis of various implant materials used in orthopedic applications. J. Fail. Anal. Prev. 4(3):17–23, 2004.Google Scholar
  4. 4.
    Al-Bermani, S. S., M. L. Blackmore, W. Zhang, and I. Todd. The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V. Metall. Mater. Trans. 41A(13):3422–3434, 2010.Google Scholar
  5. 5.
    Arcam. In: Ti6Al4V: Titanium Alloy, edited by Arcam. Sweden: Mölndal.Google Scholar
  6. 6.
    Arcam. In: Arcam A1: The future in implant manufacturing, edited by Arcam. Sweden: Mölndal.Google Scholar
  7. 7.
    ASTM. G15-07: Standard Terminology Relating to Corrosion and Corrosion Testing. West Conshohocken: ASTM International, 2007.Google Scholar
  8. 8.
    ASTM. F1472-14: Standard Specification for Wrought Titanium-6Aluminum-4Vanadium Alloy for Surgical Implant Applications. West Conshohocken: ASTM International, 2014.Google Scholar
  9. 9.
    ASTM. F2129-17: Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements to Determine the Corrosion Susceptibility of Small Implant Devices. West Conshohocken: ASTM International, 2017.Google Scholar
  10. 10.
    Atwood, S. A., E. W. Patten, K. J. Bozic, L. A. Pruitt, and M. D. Ries. Corrosion-induced fracture of a double-modular hip prosthesis: a case report. J. Bone Joint Surg. Am. 92(6):1522–1525, 2010.Google Scholar
  11. 11.
    Atwood, S. A., E. W. Patten, K. J. Bozic, L. A. Pruitt, and M. D. Ries. Corrosion-induced fracture of a double-modular hip prosthesis: a case report. JBJS 92(6):1522–1525, 2010.Google Scholar
  12. 12.
    Bai, Y., X. Gai, S. Li, L.-C. Zhang, Y. Liu, Y. Hao, et al. Improved corrosion behaviour of electron beam melted Ti-6Al-4V alloy in phosphate buffered saline. Corros. Sci. 123:289–296, 2017.Google Scholar
  13. 13.
    Brooks, E. K., R. P. Brooks, and M. T. Ehrensberger. Effects of simulated inflammation on the corrosion of 316L stainless steel. Mater. Sci. Eng. C. 71(Supplement C):200–205, 2017.Google Scholar
  14. 14.
    Chen, J.-R., and W.-T. Tsai. In situ corrosion monitoring of Ti–6Al–4V alloy in H2SO4/HCl mixed solution using electrochemical AFM. Electrochim. Acta 56(4):1746–1751, 2011.Google Scholar
  15. 15.
    Dai, N., L.-C. Zhang, J. Zhang, Q. Chen, and M. Wu. Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution. Corros. Sci. 102:484–489, 2016.Google Scholar
  16. 16.
    de Damborenea, J. J., M. A. Arenas, M. A. Larosa, A. L. Jardini, C. A. de Carvalho Zavaglia, and A. Conde. Corrosion of Ti6Al4V pins produced by direct metal laser sintering. Appl. Surf. Sci. 393:340–347, 2017.Google Scholar
  17. 17.
    Devika, D., S. S. Dass, and S. K. Chaudhary. Characterization and corrosion behaviour study on biocompatible Ti-6Al-4V component fabricated by Electron Beam Melting. J. Biomim. Biomater. Biomed. Eng. 22:63–75, 2015.Google Scholar
  18. 18.
    Dimitriou, D., M. H. L. Liow, T.-Y. Tsai, W. A. Leone, G. Li, and Y.-M. Kwon. Early outcomes of revision surgery for taper corrosion of dual taper total hip arthroplasty in 187 patients. J. Arthroplasty 31(7):1549–1554, 2016.Google Scholar
  19. 19.
    Gammon, L. M., R. D. Briggs, J. M. Packard, K. W. Batson, R. Boyer, and C. W. Domby. Metallography and Microstructures of Titanium and Its Alloys. Materials Park: ASM International, pp. 899–917, 2004.Google Scholar
  20. 20.
    Goldberg, J. R., J. L. Gilbert, J. J. Jacobs, T. W. Bauer, W. Paprosky, and S. Leurgans. A multicenter retrieval study of the taper interfaces of modular hip prostheses. Clin. Orthop. Relat. Res. 401:149–161, 2002.Google Scholar
  21. 21.
    Gurappa, I. Characterization of different materials for corrosion resistance under simulated body fluid conditions. Mater. Charact. 49(1):73–79, 2002.Google Scholar
  22. 22.
    Hiemenz, J. Electron beam melting. Adv. Mater. Process. 165(3):45–46, 2007.Google Scholar
  23. 23.
    Hoang, D., D. Perrault, M. Stevanovic, and A. Ghiassi. Surgical applications of three-dimensional printing: a review of the current literature & how to get started. Ann. Transl. Med. 4(23):456, 2016.Google Scholar
  24. 24.
    Hsu, A. R., J. D. Kim, D. Fabi, and B. R. Levine. Adverse reactions in metal-on-metal total hip arthroplasty: two cases presenting as pseudoseptic acetabular component loosening. Am. J. Orthop. 40(10):509, 2011.Google Scholar
  25. 25.
    Iebba, M., A. Astarita, D. Mistretta, I. Colonna, M. Liberini, F. Scherillo, et al. Influence of powder characteristics on formation of porosity in additive manufacturing of Ti-6Al-4V components. J. Mater. Eng. Perform. 26(8):4138–4147, 2017.Google Scholar
  26. 26.
    ISO. Biological Evaluation of Medical Devices. Part 15: Identification and Quantification of Degradation Products from Metals and Alloys. Geneva: International Organization for Standardization, 2000.Google Scholar
  27. 27.
    Kherrouba, N., M. Bouabdallah, R. Badji, D. Carron, and M. Amir. Beta to alpha transformation kinetics and microstructure of Ti-6Al-4V alloy during continuous cooling. Mater. Chem. Phys. 181(Supplement C):462–469, 2016.Google Scholar
  28. 28.
    Koike, M., K. Martinez, L. Guo, G. Chahine, R. Kovacevic, and T. Okabe. Evaluation of titanium alloy fabricated using electron beam melting system for dental applications. J. Mater. Process. Technol. 211(8):1400–1408, 2011.Google Scholar
  29. 29.
    Loeber, L., S. Biamino, U. Ackelid, S. Sabbadini, P. Epicoco, and P. Fino, et al., editors. Comparison of selective laser and electron beam melted titanium aluminides. Proceedings of the Solid Freeform Fabrication Symposium, Austin, 2011Google Scholar
  30. 30.
    Lonn, M. K., J. M. Metcalf, and B. D. Choules. In vivo and in vitro nitinol corrosion properties. Shape Mem. Superelast. 1(3):328–338, 2015.Google Scholar
  31. 31.
    Moayed, M. H., N. J. Laycock, and R. C. Newman. Dependence of the critical pitting temperature on surface roughness. Corros. Sci. 45(6):1203–1216, 2003.Google Scholar
  32. 32.
    Mok, S. W., R. Nizak, S. C. Fu, K. W. K. Ho, L. Qin, D. B. F. Saris, et al. From the printer: potential of three-dimensional printing for orthopaedic applications. J. Orthop. Transl. 6:42–49, 2016.Google Scholar
  33. 33.
    Munir, S., and W. R. Walsh. The quantification of corrosion damage for pre-stressed conditions: a model using stainless steel. J. Bio- Tribo-Corros. 2(1):4, 2016.Google Scholar
  34. 34.
    Murr, L. E., E. V. Esquivel, S. A. Quinones, S. M. Gaytan, M. I. Lopez, E. Y. Martinez, et al. Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V. Mater. Charact. 60(2):96–105, 2009.Google Scholar
  35. 35.
    Murr, L. E., S. M. Gaytan, E. Martinez, F. Medina, and R. B. Wicker. Next generation orthopaedic implants by additive manufacturing using electron beam melting. Int. J. Biomater. 2012:14, 2012.Google Scholar
  36. 36.
    Nava-Dino, C., C. López-Meléndez, R. Bautista-Margulis, M. Neri-Flores, J. Chacón-Nava, S. de la Torre, et al. Corrosion behavior of Ti-6Al-4V alloys. Int. J. Electrochem. Sci. 7:2389–2402, 2012.Google Scholar
  37. 37.
    Niinomi, M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A 243(1):231–236, 1998.Google Scholar
  38. 38.
    Parthasarathy, J., B. Starly, S. Raman, and A. Christensen. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J. Mech. Behav. Biomed. Mater. 3(3):249–259, 2010.Google Scholar
  39. 39.
    Puebla, K., L. E. Murr, S. M. Gaytan, E. Martinez, F. Medina, and R. B. Wicker. Effect of melt scan rate on microstructure and macrostructure for electron beam melting of Ti-6Al-4V. Mater. Sci. Appl. 3(5):6, 2012.Google Scholar
  40. 40.
    Puleo, D. A., and A. Nanci. Understanding and controlling the bone–implant interface. Biomaterials 20(23):2311–2321, 1999.Google Scholar
  41. 41.
    Rosenbloom, S. N., and R. A. Corbett. An assessment of ASTM F 2129 electrochemical testing of small medical implants—lessons learned. CORROSION, 2007.Google Scholar
  42. 42.
    Safdar, A., H. Z. He, L. Y. Wei, A. Snis, and L. E. Chavez De Paz. Effect of process parameters settings and thickness on surface roughness of EBM produced Ti-6Al-4V. Rapid Prototyp. J. 18(5):401–408, 2012.Google Scholar
  43. 43.
    Safdar, A., L. Y. Wei, A. Snis, and Z. Lai. Evaluation of microstructural development in electron beam melted Ti-6Al-4V. Mater. Charact. 65(Supplement C):8–15, 2012.Google Scholar
  44. 44.
    Skendzel, J. G., J. D. Blaha, and A. G. Urquhart. Total hip arthroplasty modular neck failure. J. Arthroplasty 26(2):338.e1–338.e4, 2011.Google Scholar
  45. 45.
    Sullivan, S. J. L., D. Madamba, S. Sivan, K. Miyashiro, M. L. Dreher, C. Trépanier, et al. The effects of surface processing on in vivo corrosion of Nitinol stents in a porcine model. Acta Biomater. 62:385–396, 2017.Google Scholar
  46. 46.
    Textor, M., C. Sittig, V. Frauchiger, S. Tosatti, and D. M. Brunette. Properties and Biological Significance of Natural Oxide Films on Titanium and Its Alloys. Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications. Berlin: Springer, pp. 171–230, 2001.Google Scholar
  47. 47.
    Tower, S. S. Arthroprosthetic cobaltism: neurological and cardiac manifestations in two patients with metal-on-metal arthroplasty: a case report. J. Bone Joint Surg. Am. 92(17):2847–2851, 2010.Google Scholar
  48. 48.
    Urban, R. M., M. J. Tomlinson, D. J. Hall, and J. J. Jacobs. Accumulation in liver and spleen of metal particles generated at nonbearing surfaces in hip arthroplasty. J. Arthroplasty 19(8):94–101, 2004.Google Scholar
  49. 49.
    Vrancken, B., L. Thijs, J.-P. Kruth, and J. Van Humbeeck. Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. J. Alloys Compd. 541(Supplement C):177–185, 2012.Google Scholar
  50. 50.
    Vu, N. B., N. H. Truong, L. T. Dang, L. T. Phi, N. T.-T. Ho, T. N. Pham, et al. In vitro and in vivo biocompatibility of Ti-6Al-4V titanium alloy and UHMWPE polymer for total hip replacement. Biomed. Res. Therapy. 3(3):567–577, 2016.Google Scholar
  51. 51.
    Watters, T. S., W. C. Eward, R. K. Hallows, L. G. Dodd, S. S. Wellman, and M. P. Bolognesi. Pseudotumor with superimposed periprosthetic infection following metal-on-metal total hip arthroplasty: a case report. J. Bone Joint Surg. Am. 92(7):1666–1669, 2010.Google Scholar
  52. 52.
    Weiser, M. C., and D. D. Chen. Revision for taper corrosion at the neck-body junction following total hip arthroplasty: pearls and pitfalls. Curr. Rev. Musculoskelet. Med. 9(1):75–83, 2016.Google Scholar
  53. 53.
    Wilcox, B., R. J. Mobbs, A.-M. Wu, and K. Phan. Systematic review of 3D printing in spinal surgery: the current state of play. J. Spine Surg. 3(3):433–443, 2017.Google Scholar
  54. 54.
    Willert, H.-G., G. H. Buchhorn, A. Fayyazi, R. Flury, M. Windler, G. Köster, et al. Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints: a clinical and histomorphological study. JBJS. 87(1):28–36, 2005.Google Scholar
  55. 55.
    Wright, G., S. Sporer, R. Urban, and J. Jacobs. Fracture of a modular femoral neck after total hip arthroplasty: a case report. J. Bone Joint Surg. Am. 92(6):1518–1521, 2010.Google Scholar
  56. 56.
    Xu, Y., K. L. Sundberg, and R. D. Sisson. Corrosion behavior of Ti6Al4V fabricated by direct metal laser sintering. Proceedings of the 13th World Conference on Titanium. New York: Wiley, 2016, pp. 1501–1505.Google Scholar
  57. 57.
    Xu, N., F. Wei, X. Liu, L. Jiang, H. Cai, Z. Li, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with ewing sarcoma. Spine (Phila Pa 1976) 41(1):E50–E54, 2016.Google Scholar
  58. 58.
    Yang, J., H. Yang, H. Yu, Z. Wang, and X. Zeng. Corrosion behavior of additive manufactured Ti-6Al-4V alloy in NaCl solution. Metall. Mater. Trans. A 48(7):3583–3593, 2017.Google Scholar
  59. 59.
    Zhao, X., S. Li, M. Zhang, Y. Liu, T. B. Sercombe, S. Wang, et al. Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting. Mater. Des. 95(Supplement C):21–31, 2016.Google Scholar
  60. 60.
    Zhao, B., H. Wang, N. Qiao, C. Wang, and M. Hu. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo. Mater. Sci. Eng. C 70:832–841, 2017.Google Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical SchoolUniversity of New South WalesSydneyAustralia

Personalised recommendations