Annals of Biomedical Engineering

, Volume 45, Issue 4, pp 884–897 | Cite as

Full Mimicking of Coronary Hemodynamics for Ex-Vivo Stimulation of Human Saphenous Veins

  • Marco PiolaEmail author
  • Matthijs Ruiter
  • Riccardo Vismara
  • Valeria Mastrullo
  • Marco Agrifoglio
  • Marco Zanobini
  • Maurizio Pesce
  • Monica Soncini
  • Gianfranco Beniamino Fiore


After coronary artery bypass grafting, structural modifications of the saphenous vein wall lead to lumen narrowing in response to the altered hemodynamic conditions. Here we present the design of a novel ex vivo culture system conceived for mimicking central coronary artery hemodynamics, and we report the results of biomechanical stimulation experiments using human saphenous vein samples. The novel pulsatile system used an aortic-like pressure for forcing a time-dependent coronary-like resistance to obtain the corresponding coronary-like flow rate. The obtained pulsatile pressures and flow rates (diastolic/systolic: 80/120 mmHg and 200/100 mL/min, respectively) showed a reliable mimicking of the complex coronary hemodynamic environment. Saphenous vein segments from patients undergoing coronary artery bypass grafting (n = 12) were subjected to stimulation in our bioreactor with coronary pulsatile pressure/flow patterns or with venous-like perfusion. After 7-day stimulation, SVs were fixed and stained for morphometric evaluation and immunofluorescence. Results were compared with untreated segments of the same veins. Morphometric and immunofluorescence analysis revealed that 7 days of pulsatile stimulation: (i) did not affect integrity of the vessel wall and lumen perimeter, (ii) significantly decreased both intima and media thickness, (iii) led to partial endothelial denudation, and (iv) induced apoptosis in the vessel wall. These data are consistent with the early vessel remodeling events involved in venous bypass adaptation to arterial flow/pressure patterns. The pulsatile system proved to be a suitable device to identify ex vivo mechanical cues leading to graft adaptation.


Coronary flow rate Pulsatile pressure Saphenous vein graft disease Ex vivo platform Wall remodeling 



This work was supported by the Italian Ministry of Health research Project RF-2011-02346867. The authors would like to thank Dr. Emilio Savoldelli for his support during the preliminary design of the CPD circuit and Dr. Francesco Sturla for his support with MATLAB.


The authors declare no conflict of interest to disclose.

Supplementary material

10439_2016_1747_MOESM1_ESM.pdf (611 kb)
Supplementary material 1 (PDF 612 kb)
10439_2016_1747_MOESM2_ESM.png (46 kb)
Supplementary Figure S1. A) Schematic of the RC hydraulic filter introduced for damping the peristaltic pump pulsations. The flow rate generated by the pump (Q pump ) is filtered by the RC hydraulic filter in order to obtain a quasi-steady flow rate (Q in ) (PNG 46 kb)
10439_2016_1747_MOESM3_ESM.pdf (54 kb)
Supplementary Table S1 (PDF 55 kb)

Supplementary Video S1. This video describes the CPD-equipped EVCS during conditioning of human SV in the incubator (MP4 27,382 kb)


  1. 1.
    Anwar, M. A., J. Shalhoub, C. S. Lim, M. S. Gohel, and A. H. Davies. The effect of pressure-induced mechanical stretch on vascular wall differential gene expression. J. Vasc. Res. 49:463–478, 2012.CrossRefPubMedGoogle Scholar
  2. 2.
    Berne, R. M., B. M. Koeppen, and B. A. Stanton. Berne & Levy Physiology (6th ed.). Philadelphia: Mosby/Elsevier, p. xii, 2010.Google Scholar
  3. 3.
    Borin, T. F., A. A. Miyakawa, L. Cardoso, L. de Figueiredo Borges, G. A. Goncalves, and J. E. Krieger. Apoptosis, cell proliferation and modulation of cyclin-dependent kinase inhibitor p21(cip1) in vascular remodelling during vein arterialization in the rat. Int. J. Exp. Pathol. 90:328–337, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cattaruzza, M., C. Dimigen, H. Ehrenreich, and M. Hecker. Stretch-induced endothelin B receptor-mediated apoptosis in vascular smooth muscle cells. FASEB J. 14:991–998, 2000.PubMedGoogle Scholar
  5. 5.
    Çengel, Y. A., and J. M. Cimbala. Fluid Mechanics: Fundamentals and Applications. McGraw-Hill Series in Mechanical Engineering. Boston: McGraw-HillHigher Education, 2006.Google Scholar
  6. 6.
    de Vries, M. R., K. H. Simons, J. W. Jukema, J. Braun, and P. H. Quax. Vein graft failure: from pathophysiology to clinical outcomes. Nat. Rev. Cardiol. 13:451–470, 2016.CrossRefPubMedGoogle Scholar
  7. 7.
    Garcia, D., P. G. Camici, L. G. Durand, K. Rajappan, E. Gaillard, O. E. Rimoldi, and P. Pibarot. Impairment of coronary flow reserve in aortic stenosis. J. Appl. Physiol. 106:113–121, 2009.CrossRefPubMedGoogle Scholar
  8. 8.
    Gray, S. P., E. Di Marco, K. Kennedy, P. Chew, J. Okabe, A. El-Osta, A. C. Calkin, E. A. Biessen, R. M. Touyz, M. E. Cooper, H. H. Schmidt, and K. A. Jandeleit-Dahm. Reactive oxygen species can provide atheroprotection via NOX4-dependent inhibition of inflammation and vascular remodeling. Arterioscler. Thromb. Vasc. Biol. 36:295–307, 2016.CrossRefPubMedGoogle Scholar
  9. 9.
    Gusic, R. J., R. Myung, M. Petko, J. W. Gaynor, and K. J. Gooch. Shear stress and pressure modulate saphenous vein remodeling ex vivo. J. Biomech. 38:1760–1769, 2005.CrossRefPubMedGoogle Scholar
  10. 10.
    Guyton, A. C., and J. E. Hall. Textbook of Medical Physiology (2d ed.). Philadelphia: W.B. Saunders Co., p. 1181, 1961.Google Scholar
  11. 11.
    Harskamp, R. E., M. A. Beijk, P. Damman, J. G. Tijssen, R. D. Lopes, and R. J. de Winter. Prehospitalization antiplatelet therapy and outcomes after saphenous vein graft intervention. Am. J. Cardiol. 111:153–158, 2013.CrossRefPubMedGoogle Scholar
  12. 12.
    Harskamp, R. E., J. B. Williams, R. C. Hill, R. J. de Winter, J. H. Alexander, and R. D. Lopes. Saphenous vein graft failure and clinical outcomes: toward a surrogate end point in patients following coronary artery bypass surgery? Am. Heart J. 165:639–643, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hashmi, S. F., B. Krishnamoorthy, W. R. Critchley, P. Walker, P. W. Bishop, R. V. Venkateswaran, J. E. Fildes, and N. Yonan. Histological and immunohistochemical evaluation of human saphenous vein harvested by endoscopic and open conventional methods. Interact. CardioVasc. Thorac. Surg. 20:178–185, 2015.CrossRefPubMedGoogle Scholar
  14. 14.
    Iwasaki, K., K. Kojima, S. Kodama, A. C. Paz, M. Chambers, M. Umezu, and C. A. Vacanti. Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor. Circulation 118:S52–S57, 2008.CrossRefPubMedGoogle Scholar
  15. 15.
    Kajiya, F., S. Matsuoka, Y. Ogasawara, O. Hiramatsu, S. Kanazawa, Y. Wada, S. Tadaoka, K. Tsujioka, T. Fujiwara, and M. Zamir. Velocity profiles and phasic flow patterns in the non-stenotic human left anterior descending coronary artery during cardiac surgery. Cardiovasc. Res. 27:845–850, 1993.CrossRefPubMedGoogle Scholar
  16. 16.
    Kim, F. Y., G. Marhefka, N. J. Ruggiero, S. Adams, and D. J. Whellan. Saphenous vein graft disease: review of pathophysiology, prevention, and treatment. Cardiol Rev. 21:101–109, 2013.CrossRefPubMedGoogle Scholar
  17. 17.
    Liu, S. Q., Y. Y. Ruan, D. Tang, Y. C. Li, J. Goldman, and L. Zhong. A possible role of initial cell death due to mechanical stretch in the regulation of subsequent cell proliferation in experimental vein grafts. Biomech. Model. Mechanobiol. 1:17–27, 2002.CrossRefPubMedGoogle Scholar
  18. 18.
    Longchamp, A., F. Alonso, C. Dubuis, F. Allagnat, X. Berard, P. Meda, F. Saucy, J. M. Corpataux, D. Sebastien, and J. A. Haefliger. The use of external mesh reinforcement to reduce intimal hyperplasia and preserve the structure of human saphenous veins. Biomaterials 35:2588–2599, 2014.CrossRefPubMedGoogle Scholar
  19. 19.
    Loudon, C., and A. Tordesillas. The use of the dimensionless Womersley number to characterize the unsteady nature of internal flow. J. Theor. Biol. 191:63–78, 1998.CrossRefPubMedGoogle Scholar
  20. 20.
    Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.CrossRefPubMedGoogle Scholar
  21. 21.
    Mandel, E. R., C. Uchida, E. Nwadozi, A. Makki, and T. L. Haas. tissue inhibitor of metalloproteinase 1 influences vascular adaptations to chronic alterations in blood flow. J Cell Physiol 2016. doi: 10.1002/jcp.25491.PubMedGoogle Scholar
  22. 22.
    Meissner, M. H., G. Moneta, K. Burnand, P. Gloviczki, J. M. Lohr, F. Lurie, M. A. Mattos, R. B. McLafferty, G. Mozes, R. B. Rutherford, F. Padberg, and D. S. Sumner. The hemodynamics and diagnosis of venous disease. J. Vasc. Surg. 46(Suppl S):4S–24S, 2007.CrossRefPubMedGoogle Scholar
  23. 23.
    Milnor, W. R. Hemodynamics. Baltimore: Williams & Wilkins, p. xiii, 1982.Google Scholar
  24. 24.
    Mitra, A. K., D. M. Gangahar, and D. K. Agrawal. Cellular, molecular and immunological mechanisms in the pathophysiology of vein graft intimal hyperplasia. Immunol. Cell Biol. 84:115–124, 2006.CrossRefPubMedGoogle Scholar
  25. 25.
    Miyakawa, A. A., L. A. O. Dallan, S. Lacchini, T. F. Borin, and J. E. Krieger. Human saphenous vein organ culture under controlled hemodynamic conditions. Clinics. 63:683–688, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Muto, A., L. Model, K. Ziegler, S. D. D. Eghbalieh, and A. Dardik. Mechanisms of vein graft adaptation to the arterial circulation. Circ. J. 74:1501–1512, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Narita, Y., K. Hata, H. Kagami, A. Usui, M. Ueda, and Y. Ueda. Novel pulse duplicating bioreactor system for tissue-engineered vascular construct. Tissue Eng. 10:1224–1233, 2004.CrossRefPubMedGoogle Scholar
  28. 28.
    Newby, A. C., and A. B. Zaltsman. Molecular mechanisms in intimal hyperplasia. J. Pathol. 190:300–309, 2000.CrossRefPubMedGoogle Scholar
  29. 29.
    Ochsner, Jr, A., R. Colp, Jr, and G. E. Burch. Normal blood pressure in the superficial venous system of man at rest in the supine position. Circulation 3:674–680, 1951.CrossRefPubMedGoogle Scholar
  30. 30.
    Owens, C. D. Adaptive changes in autogenous vein grafts for arterial reconstruction: clinical implications. J. Vasc. Surg. 51:736–746, 2010.CrossRefPubMedGoogle Scholar
  31. 31.
    Parang, P., and R. Arora. Coronary vein graft disease: pathogenesis and prevention. Can. J. Cardiol. 25:57–62, 2009.CrossRefGoogle Scholar
  32. 32.
    Piola, M., F. Prandi, N. Bono, M. Soncini, E. Penza, M. Agrifoglio, G. Polvani, M. Pesce, and G. B. Fiore. A compact and automated ex vivo vessel culture system for the pulsatile pressure conditioning of human saphenous veins. J. Tissue Eng. Regen. Med. 10:E204–E215, 2016.CrossRefPubMedGoogle Scholar
  33. 33.
    Piola, M., F. Prandi, G. B. Fiore, M. Agrifoglio, G. Polvani, M. Pesce, and M. Soncini. Human saphenous vein response to trans-wall oxygen gradients in a novel ex vivo conditioning platform. Ann. Biomed. Eng. 44:1449–1461, 2016.CrossRefPubMedGoogle Scholar
  34. 34.
    Piola, M., M. Soncini, M. Cantini, N. Sadr, G. Ferrario, and G. B. Fiore. Design and functional testing of a multichamber perfusion platform for three-dimensional scaffolds. Sci. World J. 2013:123974, 2013.CrossRefGoogle Scholar
  35. 35.
    Piola, M., M. Soncini, F. Prandi, G. Polvani, G. B. Fiore, and M. Pesce. Tools and procedures for ex vivo vein arterialization, preconditioning and tissue engineering: a step forward to translation to combat the consequences of vascular graft remodeling. Recent Pat. Cardiovasc. Drug Discov. 7:186–195, 2012.CrossRefPubMedGoogle Scholar
  36. 36.
    Prandi, F., M. Piola, M. Soncini, C. Colussi, Y. D’Alessandra, E. Penza, M. Agrifoglio, M. C. Vinci, G. Polvani, C. Gaetano, G. B. Fiore, and M. Pesce. Adventitial vessel growth and progenitor cells activation in an ex vivo culture system mimicking human saphenous vein wall strain after coronary artery bypass grafting. PLoS ONE 10:e0117409, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Punchard, M. A., C. Stenson-Cox, E. D. O’Cearbhaill, E. Lyons, S. Gundy, L. Murphy, A. Pandit, P. E. McHugh, and V. Barron. Endothelial cell response to biomechanical forces under simulated vascular loading conditions. J. Biomech. 40:3146–3154, 2007.CrossRefPubMedGoogle Scholar
  38. 38.
    Ruiter, M. S., J. M. van Golde, N. C. Schaper, C. D. Stehouwer, and M. S. Huijberts. Diabetes impairs arteriogenesis in the peripheral circulation: review of molecular mechanisms. Clin Sci (Lond). 119:225–238, 2010.CrossRefPubMedGoogle Scholar
  39. 39.
    Stick, C., U. Hiedl, and E. Witzleb. Venous pressure in the saphenous vein near the ankle during changes in posture and exercise at different ambient temperatures. Eur. J. Appl. Physiol. Occup. Physiol. 66:434–438, 1993.CrossRefPubMedGoogle Scholar
  40. 40.
    Tsui, J. C., and M. R. Dashwood. Recent strategies to reduce vein graft occlusion: a need to limit the effect of vascular damage. Eur. J. Vasc. Endovasc. Surg. 23:202–208, 2002.CrossRefPubMedGoogle Scholar
  41. 41.
    Vanhoutte, P. M., Y. Zhao, A. Xu, and S. W. Leung. Thirty years of saying no: sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. Circ. Res. 119:375–396, 2016.CrossRefPubMedGoogle Scholar
  42. 42.
    Vismara, R., M. Soncini, G. Talò, L. Dainese, A. Guarino, A. Redaelli, and G. B. Fiore. A bioreactor with compliance monitoring for heart valve grafts. Ann. Biomed. Eng. 38:100–108, 2009.CrossRefPubMedGoogle Scholar
  43. 43.
    Voisard, R., E. Ramiz, R. Baur, I. Gastrock-Balitsch, H. Siebeneich, O. Frank, V. Hombach, A. Hannekum, and B. Schumacher. Pulsed perfusion in a venous human organ culture model with a Windkessel function (pulsed perfusion venous HOC-model). Med. Sci. Monit. 16:523–529, 2010.Google Scholar
  44. 44.
    Westerband, A., D. Crouse, L. C. Richter, M. L. Aguirre, C. C. Wixon, D. C. James, J. L. Mills, G. C. Hunter, and R. L. Heimark. Vein adaptation to arterialization in an experimental model. J. Vasc. Surg. 33:561–569, 2001.CrossRefPubMedGoogle Scholar
  45. 45.
    Zacharias, A., T. A. Schwann, C. J. Riordan, S. J. Durham, A. S. Shah, and R. H. Habib. Late results of conventional versus all-arterial revascularization based on internal thoracic and radial artery grafting. Ann. Thorac. Surg. 87:19e1–26e2, 2009.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Marco Piola
    • 1
    Email author
  • Matthijs Ruiter
    • 2
  • Riccardo Vismara
    • 1
  • Valeria Mastrullo
    • 2
  • Marco Agrifoglio
    • 3
  • Marco Zanobini
    • 4
  • Maurizio Pesce
    • 2
  • Monica Soncini
    • 1
  • Gianfranco Beniamino Fiore
    • 1
  1. 1.Dipartimento di Elettronica, Informazione e BioingegneriaPolitecnico di MilanoMilanItaly
  2. 2.Unità di Ingegneria TissutaleCentro Cardiologico Monzino-IRCCSMilanItaly
  3. 3.Dipartimento di Scienze Cliniche e di ComunitàUniversità di MilanoMilanItaly
  4. 4.Divisione di CardiochirurgiaCentro Cardiologico Monzino-IRCCSMilanItaly

Personalised recommendations