Advertisement

Annals of Biomedical Engineering

, Volume 44, Issue 8, pp 2339–2350 | Cite as

A Predictive Model of High Shear Thrombus Growth

  • Marmar Mehrabadi
  • Lauren D. C. Casa
  • Cyrus K. Aidun
  • David N. KuEmail author
Article

Abstract

The ability to predict the timescale of thrombotic occlusion in stenotic vessels may improve patient risk assessment for thrombotic events. In blood contacting devices, thrombosis predictions can lead to improved designs to minimize thrombotic risks. We have developed and validated a model of high shear thrombosis based on empirical correlations between thrombus growth and shear rate. A mathematical model was developed to predict the growth of thrombus based on the hemodynamic shear rate. The model predicts thrombus deposition based on initial geometric and fluid mechanic conditions, which are updated throughout the simulation to reflect the changing lumen dimensions. The model was validated by comparing predictions against actual thrombus growth in six separate in vitro experiments: stenotic glass capillary tubes (diameter = 345 µm) at three shear rates, the PFA-100® system, two microfluidic channel dimensions (heights = 300 and 82 µm), and a stenotic aortic graft (diameter = 5.5 mm). Comparison of the predicted occlusion times to experimental results shows excellent agreement. The model is also applied to a clinical angiography image to illustrate the time course of thrombosis in a stenotic carotid artery after plaque cap rupture. Our model can accurately predict thrombotic occlusion time over a wide range of hemodynamic conditions.

Keywords

Arterial thrombosis Model Platelet aggregation Occlusion 

Abbreviations

a, c

Fitting constants (µm/min)

b, d

Fitting constants (s)

D

Lumen diameter

J

Thrombus growth rate (µm/min)

Jmax

Maximum thrombus growth rate (µm/min)

L

Stenosis length

r

Lumen radius

S

Wall shear rate (s−1)

\(S_{J\hbox{max} }\)

Shear rate corresponding to maximum thrombus growth rate (s−1)

t

Time

tlag

Lag time

\(t_{\text{Occ}}\)

Occlusion time

vWF

von Willebrand factor

z

The axial direction

Notes

Acknowledgments

The authors gratefully acknowledge the assistance of and Peter Costandi (Endologix, Inc.) and Susan Hastings in conducting the aortic graft experiments. This work was supported by a grant from the Center for Pediatric Innovation, Georgia Institute of Technology, Children’s Healthcare of Atlanta, and Emory University; Lawrence P. Huang Chair Funds, Georgia Institute of Technology; and the John and Mary Brock Discovery Fund. LDCC was supported by an American Heart Association Pre-Doctoral Fellowship (14PRE18080005). Aortic graft experiments were funded by Endologix, Inc. DNK and LDCC acted as paid consultants for Endologix, Inc. We declare that we have no other conflicts of interest.

Supplementary material

10439_2016_1550_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (Docx 19 kb)

References

  1. 1.
    Antaki, J. F., M. R. Ricci, J. E. Verkaik, S. T. Snyder, T. M. Maul, et al. PediaFlow™ Maglev ventricular assist device: a prescriptive design approach. Cardiovasc. Eng. Technol. 1:104–121, 2010.CrossRefGoogle Scholar
  2. 2.
    Badimon, L., J. J. Badimon, V. T. Turitto, S. Vallabhajosula, and V. Fuster. Platelet thrombus formation on collagen type I. A model of deep vessel injury. Influence of blood rheology, von Willebrand factor, and blood coagulation. Circulation 78:1431–1442, 1988.CrossRefPubMedGoogle Scholar
  3. 3.
    Bark, D. L. The Hemodynamics during Thrombosis and Impact on Thrombus Growth. Atlanta, GA: Mech. Eng., Georgia Institute of Technology, 2010.Google Scholar
  4. 4.
    Bark, D. L., and D. N. Ku. Wall shear over high degree stenoses pertinent to atherothrombosis. J. Biomech. 43:2970–2977, 2010.CrossRefPubMedGoogle Scholar
  5. 5.
    Bark, D. L., A. N. Para, and D. N. Ku. Correlation of thrombosis growth rate to pathological wall shear rate during platelet accumulation. Biotechnol. Bioeng. 109:2642–2650, 2012.CrossRefPubMedGoogle Scholar
  6. 6.
    Barstad, R. M., H. Roald, Y. Cui, V. Turitto, and K. Sakariassen. A perfusion chamber developed to investigate thombus formation and shear profiles in flowing native human blood at the apex of a well-defined stenosis. Atertio. Thromb. Vasc. Biol. 14:1984–1991, 1994.CrossRefGoogle Scholar
  7. 7.
    Bernardo, A., A. L. Bergeron, C. W. Sun, P. Guchhait, M. A. Cruz, et al. Von Willebrand factor present in fibrillar collagen enhances platelet adhesion to collagen and collagen-induced platelet aggregation. J. Thromb. Haemost. 2:660–669, 2004.CrossRefPubMedGoogle Scholar
  8. 8.
    Bland, J. M., and D. G. Altman. Statistics notes: calculating correlation coefficients with repeated observations: Part 1—correlation within subjects. BMJ 310:466, 1995.Google Scholar
  9. 9.
    Casa, L. D. C., D. H. Deaton, and D. N. Ku. Role of high shear rate in thrombosis. J. Vasc. Surg. 61:1068–1080, 2015.CrossRefPubMedGoogle Scholar
  10. 10.
    Casa, L. D. C., and D. N. Ku. Geometric design of microfluidic chambers: platelet adhesion versus accumulation. Biomed. Microdevices 16:115–126, 2014.CrossRefPubMedGoogle Scholar
  11. 11.
    Casa, L. D. C., and D. N. Ku. High shear thrombus formation under pulsatile and steady flow. Cardiovasc. Eng. Technol. 5:154–163, 2014.CrossRefGoogle Scholar
  12. 12.
    Cito, S., M. D. Mazzeo, and L. Badimon. A review of macroscopic thrombus modeling methods. Thromb. Res. 131:116–124, 2013.CrossRefPubMedGoogle Scholar
  13. 13.
    DuMouchel, W. H., and F. L. O’Brien, Integrating a Robust Option into a Multiple Regression Computing Environment., Computer Science and Statistics: Proceedings of the 21st Symposium on the Interface., American Statistical Association, Alexandria, VA, 1989.Google Scholar
  14. 14.
    Epstein, F. H., J. Lefkovits, E. F. Plow, and E. J. Topol. Mechanisms of disease: platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. New Engl. J. Med. 332:1553–1559, 1995.CrossRefGoogle Scholar
  15. 15.
    Escudero, C., M. Santos, J. Buján, M. Fuente, N. G. Honduvilla, et al. Optical aggregometry versus the PFA-100: experimental studies in pigs treated with propofol. Platelets 12:133–137, 2001.CrossRefPubMedGoogle Scholar
  16. 16.
    Flamm, M. H., T. V. Colace, M. S. Chatterjee, H. Jing, S. Zhou, et al. Multiscale prediction of patient-specific platelet function under flow. Blood 120:190–198, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hellums, J. 1993 Whitaker Lecture: biorheology in thrombosis research. Ann. Biomed. Eng. 22:445–455, 1994.CrossRefPubMedGoogle Scholar
  18. 18.
    Holland, P. W., and R. E. Welsch. Robust regression using iteratively reweighted least-squares. Commun. Stat. 6:813–827, 1977.CrossRefGoogle Scholar
  19. 19.
    Huck, V., M. F. Schneider, C. Gorzelanny, and S. W. Schneider. The various states of von Willebrand factor and their function in physiology and pathophysiology. Thromb. Haemost. 111:598–609, 2014.CrossRefPubMedGoogle Scholar
  20. 20.
    Hunter, J. V., and J. K. Chin. Carotid Angiography. In: Vascular Disease: Surgical & Interventional Therapy, edited by D. E. Strandness Jr, and Van Breda. New York: Churchill Livingstone, 1994, pp. 273–287.Google Scholar
  21. 21.
    Ku, D. N., and C. J. Flannery. Development of a flow-through system to create occluding thrombus. Biorheology 44:273–284, 2007.PubMedGoogle Scholar
  22. 22.
    Leuser, C., S. Schlottmann, R. Siekmann, M. Heidt, A. Moritz, et al. Use of the platelet function analyser PFA-100™ in juvenile pigs. Comp. Clin. Pathol. 21:761–767, 2011.CrossRefGoogle Scholar
  23. 23.
    Li, M. Microfluidic System for Thrombosis Under Multiple Shear Rates and Platelet Therapies. Atlanta, GA: Biomed. Eng, Georgia Institute of Technology, 2013.Google Scholar
  24. 24.
    Li, M., N. A. Hotaling, D. N. Ku, and C. R. Forest. Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses. PLoS One 9:e82493, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Li, M., D. Ku, and C. Forest. Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood. Lab Chip 12:1355–1362, 2012.CrossRefPubMedGoogle Scholar
  26. 26.
    Nesbitt, W. S., E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15:665–673, 2009.CrossRefPubMedGoogle Scholar
  27. 27.
    Nobili, M., J. Sheriff, U. Morbiducci, A. Redaelli, and D. Bluestein. Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAIO J. 54:64–72, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Para, A. N., and D. N. Ku. A low-volume, single pass in vitro system of high shear thrombosis in a stenosis. Thromb. Res. 131:418–424, 2013.CrossRefPubMedGoogle Scholar
  29. 29.
    Reneman, R. S., T. Arts, and A. P. G. Hoeks. Wall shear stress—an important determinant of endothelial cell function and structure—in the arterial system in vivo. J. Vasc. Res. 43:251–269, 2006.CrossRefPubMedGoogle Scholar
  30. 30.
    Rowley, J. W., A. V. Finn, P. A. French, L. K. Jennings, D. Bluestein, et al. Cardiovascular devices and platelet interactions: understanding the role of injury, flow, and cellular responses. Circ. Cardiovasc. Interv. 5:296–304, 2010.CrossRefGoogle Scholar
  31. 31.
    Ruggeri, Z. M. Von Willebrand factor: looking back and looking forward. Thromb. Haemost. 98:55–62, 2007.PubMedGoogle Scholar
  32. 32.
    Savage, B., E. Saldivar, and Z. M. Ruggeri. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84:289–297, 1996.CrossRefPubMedGoogle Scholar
  33. 33.
    Siemens, PFA-100® System: Getting Started Guide, 2008.Google Scholar
  34. 34.
    Strandness, D. E., and A. van Breda. Vascular Diseases: Surgical and Interventional Therapy. London: Churchill Livingstone, 1993.Google Scholar
  35. 35.
    Strony, J., A. Beaudoin, D. Brands, and B. Adelman. Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis. Am. J. Physiol. 265:H1787–H1796, 1993.PubMedGoogle Scholar
  36. 36.
    Tomaiuolo, M., T. J. Stalker, J. D. Welsh, S. L. Diamond, T. Sinno, et al. A systems approach to hemostasis: 2. Computational analysis of molecular transport in the thrombus microenvironment. Blood 124:1816–1824, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wang, W., and M. R. King. Multiscale modeling of platelet adhesion and thrombus growth. Ann. Biomed. Eng. 40:2345–2354, 2012.CrossRefPubMedGoogle Scholar
  38. 38.
    Xu, Z., M. Kamocka, M. Alber, and E. D. Rosen. Computational approaches to studying thrombus development. Atertio. Thromb. Vasc. Biol. 31:500–505, 2011.CrossRefGoogle Scholar
  39. 39.
    Xu, Z., J. Lioi, J. Mu, M. M. Kamocka, X. Liu, et al. A multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascade. Biophys. J. 98:1723–1732, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yun, B., J. Wu, H. Simon, S. SArgunon, F. Sotiropoulos, et al. A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase. Ann. Biomed. Eng. 40:1468–1485, 2012.CrossRefPubMedGoogle Scholar
  41. 41.
    Zydney, A., and C. Colton. Augmented solute transport in the shear flow of a concentrated suspension. Physicochem. Hydrodyn. 10:77–96, 1988.Google Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Marmar Mehrabadi
    • 1
  • Lauren D. C. Casa
    • 1
  • Cyrus K. Aidun
    • 1
  • David N. Ku
    • 1
    Email author
  1. 1.George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations