Annals of Biomedical Engineering

, Volume 43, Issue 8, pp 1716–1726 | Cite as

Biomechanics-Based Curvature Estimation for Ultrasound-guided Flexible Needle Steering in Biological Tissues

  • Pedro MoreiraEmail author
  • Sarthak Misra


Needle-based procedures are commonly performed during minimally invasive surgery for treatment and diagnosis. Accurate needle tip placement is important for the success of the procedures. Misplacement of the needle tip might cause unsuccessful treatment or misdiagnosis. Robot-assisted needle insertion systems have been developed in order to steer flexible bevel-tipped needles. However, current systems depend on the information of maximum needle curvature, which is estimated by performing prior insertions. This work presents a new three-dimensional flexible needle steering system which integrates an optimal steering control, ultrasound-based needle tracking system, needle deflection model, online needle curvature estimation and offline curvature estimation based on biomechanics properties. The online and the offline curvature estimations are used to update the steering control in real time. The system is evaluated by experiments in gelatin phantoms and biological tissues (chicken breast tissues). The average targeting error in gelatin phantoms is 0.42 ± 0.17 mm, and in biological tissues is 1.63 ± 0.29 mm. The system is able to accurately steer a flexible needle in multi-layer phantoms and biological tissues without performing prior insertions to estimate the maximum needle curvature.


Minimally invasive surgery Needle steering Needle-tissue interaction model Flexible needle deflection Needle curvature estimation 

Supplementary material

Supplementary material 1 (MP4 16095 kb)


  1. 1.
    Abayazid, M., R. J. Roesthuis, R. Reilink, and S. Misra. Integrating deflection models and image feedback for real-time flexible needle steering. IEEE Trans. Robot. 29:542–553, 2013.CrossRefGoogle Scholar
  2. 2.
    Abayazid, M., G. Vrooijink, S. Patil, R. Alterovitz, and S. Misra. Experimental evaluation of ultrasound-guided 3D needle steering in biological tissue. Int. J. CARS 9:931–939, 2014.Google Scholar
  3. 3.
    Abolhassani, N., R. Patel, and M. Moallem. Needle insertion into soft tissue: a survey. Med. Eng. Phys. 29:413–431, 2007.PubMedCrossRefGoogle Scholar
  4. 4.
    Abolhassani, N. and R. V. Patel. Deflection of a flexible needle during insertion into soft tissue. In: 28th Annual International Conference of IEEE Engineering in Medicine and Biology Society (EMBS), USA, 2006, pp. 3858–3861.Google Scholar
  5. 5.
    Asadian, A., M. R. Kermani, and R. V. Patel. An analytical model for deflection of flexible needles during needle insertion. In: Intelligent Robots and Systems (IROS), 2011, pp. 2551–2556.Google Scholar
  6. 6.
    Bernardes, M. C., B. V. Adorno, P. Poignet, and G. A. Borges. Robot-assisted automatic insertion of steerable needles with closed-loop imaging feedback and intraoperative trajectory replanning. Mechatronics 23:630–645, 2013.CrossRefGoogle Scholar
  7. 7.
    Chun, H. Y., M. T. Kim, H. C. Jung, K. Ko, and K. G. Kim. Experimental study on needle insertion force for breast. World Congr. Med. Phys. Biomed. Eng. 39:2182–2183, 2013. doi: 10.1007/978-3-642-29305-4_572.Google Scholar
  8. 8.
    Cowan, N. J., K. Goldberg, G. S. Chirikjian, G. Fichtinge, R. Alterovitz, K. B. Reed, V. Kallem, W. Park, S. Misra, and A. M. Okamura. Robotic needle steering: design, modeling, planning, and image guidance. In: Surgical Robotics—Systems, Applications, and Visions, edited by J. Rosen, B. Hannaford, and R. Satava. New York: Springer, 2011, pp. 557–582.Google Scholar
  9. 9.
    DiMaio, S. P., and S. E. Salcudean. Needle insertion modeling and simulation. IEEE Trans. Robot. Autom. 19:864–875, 2003.CrossRefGoogle Scholar
  10. 10.
    Eichelberger, L. E., M. O. Koch, J. K. Daggy, T. M. Ulbright, J. N. Eble, and L. Cheng. Predicting tumor volume in radical prostatectomy specimens from patients with prostate cancer. Am. J. Clin. Pathol. 120:386–391, 2003.PubMedCrossRefGoogle Scholar
  11. 11.
    Engh, J., G. Podnar, D. Kondziolka, and C. Riviere. Toward effective needle steering in brain tissue. In: IEEE EMBS Annual International Conference, 2006, pp. 559–562.Google Scholar
  12. 12.
    Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissue. New York: Springer, 1993.CrossRefGoogle Scholar
  13. 13.
    Gefen, A., and B. Dilmoney. Mechanics of the normal woman’s breast. Technol. Health Care 15:259–271, 2007.PubMedGoogle Scholar
  14. 14.
    Glozman, D., and M. Shoham. Image-guided robotic flexible needle steering. IEEE Trans. Rob. 23:459–467, 2007.CrossRefGoogle Scholar
  15. 15.
    Majewicz, A., S. P. Marra, M. G. van Vledder, L. MingDe, M. A. Choti, D. Y. Song, and A. M. Okamura. Behavior of tip-steerable needles in ex vivo and in vivo tissue. IEEE Trans. Biomed. Eng. 59:2705–2715, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Minhas, D. S., J. A. Engh, M. M. Fenske, and C. N. Riviere. Modeling of needle steering via duty-cycled spinning. In: IEEE EMBS Annual International Conference, 2007, pp. 5432–5435.Google Scholar
  17. 17.
    Misra, S., K. T. Ramesh, and A. M. Okamura. Modeling of tool-tissue interactions for computer-based surgical simulation: a literature review. Presence Teleop. Virt. 17:463–491, 2008.CrossRefGoogle Scholar
  18. 18.
    Misra, S., K. B. Reed, B. W. Schafer, K. T. Ramesh, and A. M. Okamura. Mechanics of flexible needles robotically steered through soft tissue. Int. J. Robot. Res. 23:1640–1660, 2010.CrossRefGoogle Scholar
  19. 19.
    Moreira, P., S. Patil, R. Alterovitz, and S. Misra. Needle steering in biological tissue using ultrasound-based online curvature estimation. In: IEEE International Conference on Robotics Automation, 2014, pp. 4368–4373.Google Scholar
  20. 20.
    Nightingale, K., S. McAleavey, and G. Trahey. Shear-wave generation using acoustic radiation force: in vivo and ex vivo results. Ultrasound Med. Biol. 29:1715–1723, 2003.PubMedCrossRefGoogle Scholar
  21. 21.
    Pacchierotti, C., M. Abayazid, S. Misra, and D. Prattichizzo. Teleoperation of steerable flexible needles by combining kinesthetic and vibratory feedback. IEEE Trans. Haptics, 1–1, 2014. doi: 10.1109/TOH.2014.2360185.
  22. 22.
    Patil, S., J. Burgner, R. J. Webster, and R. Alterovitz. Needle steering in 3-D via rapid replanning. IEEE Trans. Robot. 30:853–864, 2014. doi: 10.1109/TRO.2014.2307633.PubMedCrossRefGoogle Scholar
  23. 23.
    Podder, T. K., D. P. Clark, J. Sherman, D. Fuller, E. M. Messing, D. J. Rubens, J. G. Strang, Y. D. Zhang, W. O’Dell, W. S. Ng, and Y. Yu. Effects of tip geometry of surgical needles: an assessment of force and deflection. In: European Medical and Biological Engineering Conference (EMBEC), 2005.Google Scholar
  24. 24.
    Robert, A. L. G., G. Chagnon, I. Bricault, P. Cinquin, and A. Moreau-Gaudry. A generic three-dimensional static force distribution basis for a medical needle inserted into soft tissue. J. Mech. Behav. Biomed. Mater. 28:156–170, 2013.PubMedCrossRefGoogle Scholar
  25. 25.
    Roesthuis, R. J., M. Kemp, J. J. van den Dobbelsteen, and S. Misra. Three-dimensional needle shape reconstruction using an array of fiber bragg grating sensors. IEEE/ASME Trans. Mechatron. 19:1115–1126, 2014.CrossRefGoogle Scholar
  26. 26.
    Sadjadi, H., K. Hashtrudi-Zaad, and G. Fichtinger. Fusion of electromagnetic trackers to improve needle deflection estimation: simulation study. IEEE Trans. Biomed. Eng. 60:2706–2715, 2013. doi: 10.1109/TBME.2013.2262658.PubMedCrossRefGoogle Scholar
  27. 27.
    van Veen, Y. R. J., A. Jahya, and S. Misra. Macroscopic and microscopic observations of needle insertion into gels. Proc. Inst. Mech. Eng. [H] 226:441–449, 2012.CrossRefGoogle Scholar
  28. 28.
    Vrooijink, G. J., M. Abayazid, S. Patil, R. Alterovitz, and S. Misra. Needle path planning and steering in a three-dimensional non-static environment using two-dimensional ultrasound images. Int. J. Robot. Res. 33:1361–1374, 2014.CrossRefGoogle Scholar
  29. 29.
    Webster, III, R. J., J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Okamura. Nonholonomic modeling of needle steering. Int. J. Robot. Res. 25:509–525, 2006.CrossRefGoogle Scholar
  30. 30.
    Yaniv, Z., P. Cheng, E. Wilson, T. Popa, D. Lindisch, E. Campos-Nanez, H. Abeledo, V. Watson, K. Cleary, and F. Banovac. Needle-based interventions with the image-guided surgery toolkit (IGSTK): from phantoms to clinical trials. IEEE Trans. Biomed. Eng. 57:922–933, 2010.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  1. 1.Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical MedicineUniversity of TwenteEnschedeThe Netherlands
  2. 2.Department of Biomedical EngineeringUniversity of Groningen and University Medical Centre GroningenGroningenThe Netherlands

Personalised recommendations