Quantification of a Thermal Damage Threshold for Astrocytes Using Infrared Laser Generated Heat Gradients


The response of cells and tissues to elevated temperatures is highly important in several research areas, especially in the area of infrared neural stimulation. So far, only the heat response of neurons has been considered. In this study, primary rat astrocytes were exposed to infrared laser pulses of various pulse lengths and the resulting cell morphology changes and cell migration was studied using light microscopy. By using a finite element model of the experimental setup the temperature distribution was simulated and the temperatures and times to induce morphological changes and migration were extracted. These threshold temperatures were used in the commonly used first-order reaction model according to Arrhenius to extract the kinetic parameters, i.e., the activation energy, E a, and the frequency factor, A c, for the system. A damage signal ratio threshold was defined and calculated to be 6% for the astrocytes to change morphology and start migrating.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. 1.

    Albert, E. S., J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert. TRPV4 channels mediate the infrared laser-evoked response in sensory neurons. J. Neurophysiol. 107(12):3227–3234, 2012.

  2. 2.

    Bhowmick, S., J. E. Coad, D. J. Swanlund, and J. C. Bischof. In vitro thermal therapy of AT-1 Dunning prostate tumours. Int. J. Hyperthermia 20(1):73–92, 2004.

  3. 3.

    Bhowmick, S., D. J. Swanlund, and J. C. Bischof. Supraphysiological thermal injury in Dunning AT-1 prostate tumor cells. J. Biomech. Eng. 122(1):51–59, 2000.

  4. 4.

    Dittami, G. M., S. M. Rajguru, R. A. Lasher, R. W. Hitchcock, and R. D. Rabbitt. Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes. J. Physiol. 589:1295–1306, 2011.

  5. 5.

    Douglas Fields, D. R. The Other Brain: The Scientific and Medical Breakthroughs That Will Heal Our Brains and Revolutionize Our Health (1st ed.). New York: Simon & Schuster, 2009.

  6. 6.

    Ebbesen, C. L., and H. Bruus. Analysis of laser-induced heating in optical neuronal guidance. J. Neurosci. Methods 209(1):168–177, 2012.

  7. 7.

    Eul, S., A. I. Matic, M. Otting, J. T. Walsh Jr., and C. P. Richter. Optical stimulation in mice lacking the TRPV1 channel. In: Proceedings of the SPIE—The International Society for Optical Engineering (USA), 2009, p. 71800S (71805 pp.).

  8. 8.

    Fork, R. L. Laser stimulation of nerve cells in Aplysia. Science 171(3974):907–908, 1971.

  9. 9.

    Goyal, V., S. Rajguru, A. I. Matic, S. R. Stock, and C. P. Richter. Acute damage threshold for infrared neural stimulation of the cochlea: functional and histological evaluation. Anat. Rec. (Hoboken) 295(11):1987–1999, 2012.

  10. 10.

    He, X., and J. C. Bischof. Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit. Rev. Biomed. Eng. 31(5–6):355–422, 2003.

  11. 11.

    He, X., and J. C. Bischof. The kinetics of thermal injury in human renal carcinoma cells. Ann. Biomed. Eng. 33(4):502–510, 2005.

  12. 12.

    Henriques, Jr., F. C. Studies of thermal injury; the predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Arch. Pathol. (Chic.) 43(5):489–502, 1947.

  13. 13.

    Izzo, A. D., C. P. Richter, E. D. Jansen, and J. T. Walsh, Jr. Laser stimulation of the auditory nerve. Lasers Surg. Med. 38(8):745–753, 2006.

  14. 14.

    Izzo, A. D., E. Suh, J. Pathria, J. T. Walsh, D. S. Whitlon, and C. P. Richter. Selectivity of neural stimulation in the auditory system: a comparison of optic and electric stimuli. J. Biomed. Opt. 12(2):021008, 2007.

  15. 15.

    Kornyei, Z., A. Czirok, T. Vicsek, and E. Madarasz. Proliferative and migratory responses of astrocytes to in vitro injury. J. Neurosci. Res. 61(4):421–429, 2000.

  16. 16.

    Lepock, J. R. Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. Int. J. Hyperthermia 19(3):252–266, 2003.

  17. 17.

    Liljemalm, R., T. Nyberg, and H. von Holst. Heating during infrared neural stimulation. Lasers Surg. Med. 45(7):469–481, 2013.

  18. 18.

    Nishimura, R. N., B. E. Dwyer, K. Clegg, R. Cole, and J. de Vellis. Comparison of the heat shock response in cultured cortical neurons and astrocytes. Brain Res. Mol. Brain Res. 9(1–2):39–45, 1991.

  19. 19.

    O’Neill, D. P., T. Peng, P. Stiegler, U. Mayrhauser, S. Koestenbauer, K. Tscheliessnigg, and S. J. Payne. A three-state mathematical model of hyperthermic cell death. Ann. Biomed. Eng. 39(1):570–579, 2011.

  20. 20.

    Pearce, J. Mathematical models of laser-induced tissue thermal damage. Int. J. Hyperthermia 27(8):741–750, 2011.

  21. 21.

    Rajguru, S. M., A. I. Matic, A. M. Robinson, A. J. Fishman, L. E. Moreno, A. Bradley, I. Vujanovic, J. Breen, J. D. Wells, M. Bendett, and C. P. Richter. Optical cochlear implants: evaluation of surgical approach and laser parameters in cats. Hear. Res. 269(1–2):102–111, 2010.

  22. 22.

    Shapiro, M. G., K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla. Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 3:736, 2012.

  23. 23.

    Simanovskii, D. M., M. A. Mackanos, A. R. Irani, C. E. O’Connell-Rodwell, C. H. Contag, H. A. Schwettman, and D. V. Palanker. Cellular tolerance to pulsed hyperthermia. Phys. Rev. E 74(1 Pt 1):011915, 2006.

  24. 24.

    Thompson, A. C., S. A. Wade, W. G. Brown, and P. R. Stoddart. Modeling of light absorption in tissue during infrared neural stimulation. J. Biomed. Opt. 17(7):075002, 2012.

  25. 25.

    Wells, J., C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen. Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophys. J. 93(7):2567–2580, 2007.

  26. 26.

    Wells, J. D., S. Thomsen, P. Whitaker, E. D. Jansen, C. C. Kao, P. E. Konrad, and A. Mahadevan-Jansen. Optically mediated nerve stimulation: identification of injury thresholds. Lasers Surg. Med. 39(6):513–526, 2007.

  27. 27.

    Wieliczka, D. M., W. Shengshan, and M. R. Querry. Wedge shaped cell for highly absorbent liquids: infrared optical constants of water. Appl. Opt. 28:1714–1719, 1989.

Download references


Funding was received from the Product Innovation Engineering Program (PIEp) through the Innovation Driven Research Education (IDRE). We are grateful to Professor Hans Hebert at the School for Technology and Health at the Royal Institute of technology for providing the digital microscope.

Author information

Correspondence to Rickard Liljemalm or Tobias Nyberg.

Additional information

Associate Editor Holly Ober oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

AVI (3502 KB)

AVI (3502 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liljemalm, R., Nyberg, T. Quantification of a Thermal Damage Threshold for Astrocytes Using Infrared Laser Generated Heat Gradients. Ann Biomed Eng 42, 822–832 (2014) doi:10.1007/s10439-013-0940-1

Download citation


  • Arrhenius
  • Heating
  • Cell damage
  • Modeling
  • Astrocytes