Advertisement

Annals of Biomedical Engineering

, Volume 42, Issue 1, pp 36–49 | Cite as

A Mechatronic System for Quantitative Application and Assessment of Massage-Like Actions in Small Animals

  • Qian Wang
  • Hansong Zeng
  • Thomas M. Best
  • Caroline Haas
  • Ned T. Heffner
  • Sudha Agarwal
  • Yi ZhaoEmail author
Article

Abstract

Massage therapy has a long history and has been widely believed effective in restoring tissue function, relieving pain and stress, and promoting overall well-being. However, the application of massage-like actions and the efficacy of massage are largely based on anecdotal experiences that are difficult to define and measure. This leads to a somewhat limited evidence-based interface of massage therapy with modern medicine. In this study, we introduce a mechatronic device that delivers highly reproducible massage-like mechanical loads to the hind limbs of small animals (rats and rabbits), where various massage-like actions are quantified by the loading parameters (magnitude, frequency and duration) of the compressive and transverse forces on the subject tissues. The effect of massage is measured by the difference in passive viscoelastic properties of the subject tissues before and after mechanical loading, both obtained by the same device. Results show that this device is useful in identifying the loading parameters that are most conducive to a change in tissue mechanical properties, and can determine the range of loading parameters that result in sustained changes in tissue mechanical properties and function. This device presents the first step in our effort for quantifying the application of massage-like actions used clinically and measurement of their efficacy that can readily be combined with various quantitative measures (e.g., active mechanical properties and physiological assays) for determining the therapeutic and mechanistic effects of massage therapies.

Keywords

Medical devices Massage therapy Mechanics Viscoelasticity 

Notes

Acknowledgments

Research reported in the publication was supported by Department of Biomedical Engineering at the Ohio State University and the National Center for Complementary and Alternative Medicine of the National Institutes of Health under Award Number RO1AT004922. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Supplementary material

Supplementary material (WMV 12,070 kb)

Supplementary material (WMV 16,167 kb)

References:

  1. 1.
    Aourell, M., M. Skoog, and J. Carleson. Effects of Swedish massage on blood pressure. Complement Ther. Clin. Pract. 11(4):242–246, 2005.PubMedCrossRefGoogle Scholar
  2. 2.
    Ariji, Y., A. Katsumata, N. Ogi, M. Izumi, S. Sakuma, Y. Iida, Y. Hiraiwa, K. Kurita, C. Igarashi, K. Kobayashi, H. Ishii, A. Takanishi, and E. Ariji. An oral rehabilitation robot for massaging the masseter and temporal muscles: a preliminary report. Oral Radiol. 25(1):53–59, 2009.Google Scholar
  3. 3.
    Ayas, S., B. Leblebici, S. Sozay, M. Bayramoglu, and E. A. Niron. The effect of abdominal massage on bowel function in patients with spinal cord injury. Am. J. Phys. Med. Rehabil. 85(12):951–955, 2006.PubMedCrossRefGoogle Scholar
  4. 4.
    Beard, G., and E. Wood. Massage: Principles and Techniques. Philadelphia, PA: Saunders, 1964.Google Scholar
  5. 5.
    Best, T. M., R. Hunter, A. Wilcox, and F. Haq. Effectiveness of sports massage for recovery of skeletal muscle from strenuous exercise. Clin. J. Sport Med. 18(5):446–460, 2008.PubMedCrossRefGoogle Scholar
  6. 6.
    Billhult, A., C. Lindholm, R. Gunnarsson, and E. Stener-Victorin. The effect of massage on immune function and stress in women with breast cancer—a randomized controlled trial. Auton Neurosci. 150(1–2):111–115, 2009.PubMedCrossRefGoogle Scholar
  7. 7.
    Brunton, T. L., and F. W. Tunnicliffe. On the effects of the kneading of muscles upon the circulation, local and general. J Physiol. 17(5):364–377, 1894.Google Scholar
  8. 8.
    Buckle, J., A. Newberg, N. Wintering, E. Hutton, C. Lido, and J. T. Farrar. Measurement of regional cerebral blood flow associated with the M technique-light massage therapy: a case series and longitudinal study using SPECT. J. Altern. Complement. Med. 14(8):903–910, 2008.PubMedCrossRefGoogle Scholar
  9. 9.
    Butterfield, T., Y. Zhao, S. Agarwal, F. Haq, and T. Best. Cyclic compressive loading facilitates recovery after eccentric exercise. Med. Sci. Sports Exerc. 40(7):1289–1296, 2008.Google Scholar
  10. 10.
    Calvert, R. N. The Greek and Roman Baths. Massage Magazine. 2005.Google Scholar
  11. 11.
    Calvert, R. N. The History of Massage : An Illustrated Survey from Around the World. Rochester, VT: Healing Arts Press, 2002.Google Scholar
  12. 12.
    Christopoulou-Aletra, H., and N. Papavramidou. Methods used by the hippocratic physicians for weight reduction. World J. Surg. 28(5):513–517, 2004.PubMedCrossRefGoogle Scholar
  13. 13.
    Chunco, R. The effects of massage on pain, stiffness, and fatigue levels associated with ankylosing spondylitis: a case study. Int J Ther Massage Bodywork. 4(1):12–17, 2011.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Clarkson, P. M., and S. P. Sayers. Etiology of exercise-induced muscle damage. Can. J. Appl. Physiol. 24(3):234–248, 1999.PubMedCrossRefGoogle Scholar
  15. 15.
    Diego, M. A., T. Field, M. Hernandez-Reif, K. Shaw, L. Friedman, and G. Ironson. HIV adolescents show improved immune function following massage therapy. Int. J. Neurosci. 106(1–2):35–45, 2001.PubMedCrossRefGoogle Scholar
  16. 16.
    Durkin, J. L., A. Harvey, R. L. Hughson, and J. P. Callaghan. The effects of lumbar massage on muscle fatigue, muscle oxygenation, low back discomfort, and driver performance during prolonged driving. Ergonomics 49(1):28–44, 2006.PubMedCrossRefGoogle Scholar
  17. 17.
    Field, T. M. Massage therapy effects. Am. Psychol. 53(12):1270–1281, 1998.PubMedCrossRefGoogle Scholar
  18. 18.
    Guzzetta, A., S. Baldini, A. Bancale, L. Baroncelli, F. Ciucci, P. Ghirri, E. Putignano, A. Sale, A. Viegi, N. Berardi, A. Boldrini, G. Cioni, and L. Maffei. Massage accelerates brain development and the maturation of visual function. J. Neurosci. 29(18):6042–6051, 2009.PubMedCrossRefGoogle Scholar
  19. 19.
    Haas, C., T. M. Best, Q. Wang, T. A. Butterfield, and Y. Zhao. In vivo passive mechanical properties of skeletal muscle improve with massage-like loading following eccentric exercise. J. Biomech. 45(15):2630–2636, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Haas, C., T. A. Butterfield, Y. Zhao, X. Zhang, D. Jarjoura, and T. M. Best. Dose-dependency of massage-like compressive loading on recovery of active muscle properties following eccentric exercise: rabbit study with clinical relevance. Br. J. Sports Med. 47(2):83–88, 2013.PubMedCrossRefGoogle Scholar
  21. 21.
    Haas, C., T. A. Butterfield, S. Abshire, Y. Zhao, X. Zhang, D. Jarjoura, and T. M. Best. Massage timing affects postexercise muscle recovery and inflammation in a rabbit model. Med. Sci. Sports Exerc. 45(6):1105–1112, 2012.Google Scholar
  22. 22.
    Hemmings, B., M. Smith, J. Graydon, and R. Dyson. Effects of massage on physiological restoration, perceived recovery, and repeated sports performance. Br. J. Sports Med. 34(2):109–114, 2000; discussion 115.Google Scholar
  23. 23.
    Hinds, T., I. McEwan, J. Perkes, E. Dawson, D. Ball, and K. George. Effects of massage on limb and skin blood flow after quadriceps exercise. Med. Sci. Sports Exerc. 36(8):1308–1313, 2004.PubMedCrossRefGoogle Scholar
  24. 24.
    Hippocrates, A. F. The Genuine Works of Hippocrates. New York: W. Wood and Company, 1886.Google Scholar
  25. 25.
    Holst, S., I. Lund, M. Petersson, and K. Uvnas-Moberg. Massage-like stroking influences plasma levels of gastrointestinal hormones, including insulin, and increases weight gain in male rats. Auton Neurosci. 120(1–2):73–79, 2005.PubMedCrossRefGoogle Scholar
  26. 26.
    Ironson, G., T. Field, F. Scafidi, M. Hashimoto, M. Kumar, A. Kumar, A. Price, A. Goncalves, I. Burman, C. Tetenman, R. Patarca, and M. A. Fletcher. Massage therapy is associated with enhancement of the immune system’s cytotoxic capacity. Int. J. Neurosci. 84(1–4):205–217, 1996.PubMedCrossRefGoogle Scholar
  27. 27.
    Keverne, E. B., N. D. Martensz, and B. Tuite. Beta-endorphin concentrations in cerebrospinal fluid of monkeys are influenced by grooming relationships. Psychoneuroendocrinology. 14(1–2):155–161, 1989.PubMedCrossRefGoogle Scholar
  28. 28.
    Loerakker, S., A. Stekelenburg, G. J. Strijkers, J. J. M. Rijpkema, F. P. T. Baaijens, D. L. Bader, K. Nicolay, and C. W. J. Oomens. Temporal effects of mechanical loading on deformation-induced damage in skeletal muscle tissue. Ann. Biomed. Eng. 38(8):2577–2587, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Macgregor, R., R. Campbell, M. H. Gladden, N. Tennant, and D. Young. Effects of massage on the mechanical behaviour of muscles in adolescents with spastic diplegia: a pilot study. Dev. Med. Child Neurol. 49(3):187–191, 2007.PubMedCrossRefGoogle Scholar
  30. 30.
    Marti-Ibanez, F. The epic of medicine. Rev. Cubana Med. 1:99–116, 1962 contd.Google Scholar
  31. 31.
    Massage and Bodywork. Greek Medicine 2010; http://www.greekmedicine.net/therapies/Massage_and_Bodywork.html.
  32. 32.
    Moraska, A., C. Chandler, A. Edmiston-Schaetzel, G. Franklin, E. L. Calenda, and B. Enebo. Comparison of a targeted and general massage protocol on strength, function, and symptoms associated with carpal tunnel syndrome: a randomized pilot study. J. Altern. Complement. Med. 14(3):259–267, 2008.PubMedCrossRefGoogle Scholar
  33. 33.
    Ouchi, Y., T. Kanno, H. Okada, E. Yoshikawa, T. Shinke, S. Nagasawa, K. Minoda, and H. Doi. Changes in cerebral blood flow under the prone condition with and without massage. Neurosci Lett. 407(2):131–135, 2006.Google Scholar
  34. 34.
    Shoemaker, J. K., P. M. Tiidus, and R. Mader. Failure of manual massage to alter limb blood flow: measures by Doppler ultrasound. Med. Sci. Sports Exerc. 29(5):610–614, 1997.PubMedCrossRefGoogle Scholar
  35. 35.
    So, C. S., J. V. Sarath, R. A. Giolli, and S. Gollapudi. The effect of thermal massage on human T-Lymphocyte and natural killer cell function. Internet J. Altern. Med. 6(1), 2008. doi: 10.5580/317/.
  36. 36.
    Tiidus, P. M. Massage and ultrasound as therapeutic modalities in exercise-induced muscle damage. Can. J. Appl. Physiol. 24(3):267–278, 1999.PubMedCrossRefGoogle Scholar
  37. 37.
    Veith, I. Huang Ti nei ching su wên. The Yellow Emperor’s classic of internal medicine. New ed. Berkeley: University of California Press, 1966.Google Scholar
  38. 38.
    Weerapong, P., P. A. Hume, and G. S. Kolt. The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports Med. 35(3):235–256, 2005.PubMedCrossRefGoogle Scholar
  39. 39.
    Wilburn, O., P. Wilburn, and S. G. Rockson. A pilot, prospective evaluation of a novel alternative for maintenance therapy of breast cancer-associated lymphedema [ISRCTN76522412]. BMC Cancer. 6:84, 2006.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Wiltshire, E. V., V. Poitras, M. Pak, T. Hong, J. Rayner, and M. E. Tschakovsky. Massage impairs postexercise muscle blood flow and “lactic acid” removal. Med. Sci. Sports Exerc. 42(6):1062–1071, 2010.PubMedGoogle Scholar
  41. 41.
  42. 42.
  43. 43.
    Zeng, H., T. Butterfield, S. Agarwal, F. Haq, T. Best, and Y. Zhao. An engineering approach for quantitative analysis of the lengthwise strokes in massage therapies. J. Med. Devices Trans. ASME 2(4):041003, 2008.Google Scholar
  44. 44.
    Zesiewicz, T. A., and M. L. Evatt. Potential influences of complementary therapy on motor and non-motor complications in Parkinson’s disease. CNS Drugs. 23(10):817–835, 2009.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Qian Wang
    • 1
  • Hansong Zeng
    • 1
  • Thomas M. Best
    • 1
    • 2
    • 3
  • Caroline Haas
    • 1
    • 2
  • Ned T. Heffner
    • 1
  • Sudha Agarwal
    • 1
    • 4
  • Yi Zhao
    • 1
    • 5
    Email author
  1. 1.Department of Biomedical Engineering, College of EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Division of Sports Medicine, Department of Family Medicine, College of MedicineThe Ohio State UniversityColumbusUSA
  3. 3.Sports Health and Performance InstituteThe Ohio State UniversityColumbusUSA
  4. 4.Division of Oral Biology, College of DentistryThe Ohio State UniversityColumbusUSA
  5. 5.Department of Biomedical EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations