Annals of Biomedical Engineering

, Volume 41, Issue 10, pp 2157–2170 | Cite as

Vortex Phenomena in Sidewall Aneurysm Hemodynamics: Experiment and Numerical Simulation

  • Trung B. Le
  • Daniel R. Troolin
  • Devesh Amatya
  • Ellen K. Longmire
  • Fotis SotiropoulosEmail author


We carry out high-resolution laboratory experiments and numerical simulations to investigate the dynamics of unsteady vortex formation across the neck of an anatomic in vitro model of an intracranial aneurysm. A transparent acrylic replica of the aneurysm is manufactured and attached to a pulse duplicator system in the laboratory. Time-resolved three-dimensional three-component velocity measurements are obtained inside the aneurysm sac under physiologic pulsatile conditions. High-resolution numerical simulations are also carried out under conditions replicating as closely as possible those of the laboratory experiment. Comparison of the measured and computed flow fields shows very good agreement in terms of instantaneous velocity fields and three-dimensional coherent structures. Both experiments and numerical simulations show that a well-defined vortical structure is formed near the proximal neck at early systole. This vortical structure is advected by the flow across the aneurysm neck and impinges on the distal wall. The results underscore the complexity of aneurysm hemodynamics and point to the need for integrating high-resolution, time-resolved three-dimensional experimental and computational techniques. The current work emphasizes the importance of vortex formation phenomena at aneurysmal necks and reinforces the findings of previous computational work and recent clinical studies pointing to links between flow pulsatility and aneurysm growth and rupture.


Computational Fluid Dynamics Aneurysm number Vortex flow Volumetric velocity measurement 



Financial support for this work is from a grant from Mayo Clinic. We would like to thank Dr. David Kallmes for providing us the anatomic aneurysm geometry. We gratefully acknowledge the support of Minnesota Supercomputing Institute for the computational time. The first author (Trung Bao Le) is supported partially by a pre-doctoral fellowship from Vietnam Education Foundation.

Conflict of interest


Supplementary material

10439_2013_811_MOESM1_ESM.pdf (31 kb)
Supplementary material 1 (PDF 30 kb)

Supplementary material 2 (MOV 9884 kb)


  1. 1.
    Baek, H., M. Jayaraman, P. Richardson, and G. Karniadakis. Flow instability and wall shear stress variation in intracranial aneurysms. J. R. Soc. Interface 7(47):967–988, 2010.PubMedCrossRefGoogle Scholar
  2. 2.
    Bijari, P. B., L. Antiga, D. Gallo, B. A. Wasserman, and D. A. Steinman. Improved prediction of disturbed flow via hemodynamically-inspired geometric variables. J. Biomech. 2012Google Scholar
  3. 3.
    Borazjani, I., and L. Ge. Sotiropoulos, Fotis. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227:7587–7620, 2008.PubMedCrossRefGoogle Scholar
  4. 4.
    Boutsianis, E., M. Guala, U. Olgac, et al. CFD and PTV steady flow investigation in an anatomically accurate abdominal aortic aneurysm. J. Biomech. Eng. 131:011008–011001.Google Scholar
  5. 5.
    Cantón, G., D. I. Levy, J. C. Lasheras, and P. K. Nelson. Flow changes caused by the sequential placement of stents across the neck of sidewall cerebral aneurysms. J. Neurosurg. 103(5):891–902, 2005.PubMedCrossRefGoogle Scholar
  6. 6.
    Cebral, J. R., M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millan, and A. F. Frangi. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. Med. Imaging 24(4):457–467, 2005.PubMedCrossRefGoogle Scholar
  7. 7.
    Ford, M. D., H. N. Nikolov, J. S. Milner, et al. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130:021015, 2008.PubMedCrossRefGoogle Scholar
  8. 8.
    Ford, M. D., and U. Piomelli. Exploring high frequency temporal fluctuations in the terminal aneurysm of the basilar bifurcation. J. Biomech. Eng. 134(9):091003, 2012.PubMedCrossRefGoogle Scholar
  9. 9.
    Gallo, D., D. A. Steinman, P. B. Bijari, and U. Morbiducci. Helical flow in carotid bifurcation as surrogate marker of exposure to disturbed shear. J. Biomech. 2012.Google Scholar
  10. 10.
    Ge, L., and F. Sotiropoulos. A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 225:1782, 2007.PubMedCrossRefGoogle Scholar
  11. 11.
    Gharib, M., E. Rambod, and K. Shariff. A universal time scale for vortex ring formation. J. Fluid Mech. 360(1):121, 1998.CrossRefGoogle Scholar
  12. 12.
    Gilmanov, A., and F. Sotiropoulos. A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J. Comput. Phys. 207(2):457–492, 2005.Google Scholar
  13. 13.
    Gosling, R., and D. King. Arterial assessment by Doppler-shift ultrasound. Proc. R. Soc. Med. 67(6 Pt 1):447, 1974.PubMedGoogle Scholar
  14. 14.
    Helmlinger, G., R. Geiger, S. Schreck, and R. Nerem. Effects of pulsatile flow on cultured vascular endothelial cell morphology. J. Biomech. Eng. 113(2):123, 1991.PubMedCrossRefGoogle Scholar
  15. 15.
    Hoi, Y., S. H. Woodward, M. Kim, D. B. Taulbee, and H. Meng. Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J. Biomech. Eng. 128(6):844, 2006.PubMedCrossRefGoogle Scholar
  16. 16.
    Holdsworth, D. W., C. J. D. Norley, R. Frayne, D. A. Steinman, and B. K. Rutt. Characterization of common carotid artery blood-flow waveforms in normal human subjects. Physiol. Meas. 20(3):219, 1999.PubMedCrossRefGoogle Scholar
  17. 17.
    Hope, T. A., M. D. Hope, D. D. Purcell, et al. Evaluation of intracranial stenoses and aneurysms with accelerated 4D flow. Magn. Reson. Imaging 28(1):41–46, 2010.PubMedCrossRefGoogle Scholar
  18. 18.
    Hunt, J. C. R., A. A. Wray, and P. Moin. Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88. 1988:193-208.Google Scholar
  19. 19.
    Kadirvel, R., Y.-H. Ding, D. Dai, et al. The influence of hemodynamic forces on biomarkers in the walls of elastase-induced aneurysms in rabbits. Neuroradiology 49(12):1041–1053, 2007.PubMedCrossRefGoogle Scholar
  20. 20.
    Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29(1):399–434, 1997.CrossRefGoogle Scholar
  21. 21.
    Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler. Thromb. Vasc. Biol. 5(3):293–302, 1985.CrossRefGoogle Scholar
  22. 22.
    Le, B. T., I. Borazjani, and F. Sotiropoulos. Pulsatile flow effects on the hemodynamics of intracranial aneurysms. J. Biomech. Eng. 132(11):111009–111011.Google Scholar
  23. 23.
    Le, T. B., and F. Sotiropoulos. Fluid-structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J. Comput. Phys. 2012.Google Scholar
  24. 24.
    Le, T. B., I. Borazjani, S. Kang, and F. Sotiropoulos. On the structure of vortex rings from inclined nozzles. J. Fluid Mech. 686(-1):451–483, 2011.Google Scholar
  25. 25.
    Lee, S.-W., L. Antiga, J. D. Spence, and D. A. Steinman. Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke 39(8):2341–2347, 2008.PubMedCrossRefGoogle Scholar
  26. 26.
    Lindegaard, K.-F., S. J. Bakke, P. Grolimund, R. Aaslid, P. Huber, and H. Nornes. Assessment of intracranial hemodynamics in carotid artery disease by transcranial Doppler ultrasound. J. Neurosurg. 63(6):890–898, 1985.PubMedCrossRefGoogle Scholar
  27. 27.
    Liou, T.-M., and Y.-C. Li. Effects of stent porosity on hemodynamics in a sidewall aneurysm model. J. Biomech. 41(6):1174–1183, 2008.PubMedCrossRefGoogle Scholar
  28. 28.
    Marshall, I., P. Papathanasopoulou, and K. Wartolowska. Carotid flow rates and flow division at the bifurcation in healthy volunteers. Physiol. Meas. 25(3):691, 2004.PubMedCrossRefGoogle Scholar
  29. 29.
    Meckel, S., A. F. Stalder, F. Santini, et al. In vivo visualization and analysis of 3-D hemodynamics in cerebral aneurysms with flow-sensitized 4-D MR imaging at 3 T. Neuroradiology 50(6):473–484, 2008.PubMedCrossRefGoogle Scholar
  30. 30.
    Palero, V. R., J. Lobera, and M. P. Arroyo. Three-component velocity field measurement in confined liquid flows with high-speed digital image plane holography. Exp. Fluids 49(2):471–483, 2010.CrossRefGoogle Scholar
  31. 31.
    Patti, J., F. Viñuela, and A. Chien. Distinct trends of pulsatility found at the necks of ruptured and unruptured aneurysms. J. NeuroInterv. Surg. 2013Google Scholar
  32. 32.
    Pereira, F., H. Stüer, E. C. Graff, and M. Gharib. Two-frame 3D particle tracking. Meas. Sci. Technol. 17(7):1680, 2006.CrossRefGoogle Scholar
  33. 33.
    Perktold, K., K. Gruber, T. Kenner, and H. Florian. Calculation of pulsatile flow and particle paths in an aneurysm-model. Basic Res. Cardiol. 79(3):253–261, 1984.PubMedCrossRefGoogle Scholar
  34. 34.
    Seong, J., A. K. Wakhloo, and B. B. Lieber. In vitro evaluation of flow divertors in an elastase-induced saccular aneurysm model in rabbit. J. Biomech. Eng. 129(6):863, 2007.PubMedCrossRefGoogle Scholar
  35. 35.
    Sforza, D. M., C. M. Putman, and J. R. Cebral. Hemodynamics of cerebral aneurysms. Annu. Rev. Fluid Mech. 41:91, 2009.PubMedCrossRefGoogle Scholar
  36. 36.
    Steinman, D. Computational modeling and flow diverters: a teaching moment. Am. J. Neuroradiol. 32(6):981–983, 2011.PubMedCrossRefGoogle Scholar
  37. 37.
    Steinman, D. A., J. S. Milner, C. J. Norley, S. P. Lownie, and D. W. Holdsworth. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am. J. Neuroradiol. 24(4):559–566, 2003.PubMedGoogle Scholar
  38. 38.
    Troolin, D. R., and E. K. Longmire. Volumetric velocity measurements of vortex rings from inclined exits. Exp. Fluids 48(3):409–420, 2010.CrossRefGoogle Scholar
  39. 39.
    Ugron, Á., M.-I. Farinas, L. Kiss, and G. Paál. Unsteady velocity measurements in a realistic intracranial aneurysm model. Exp. Fluids 52(1):37–52, 2012.CrossRefGoogle Scholar
  40. 40.
    Valencia, A., S. Botto, J. Sordo, M. Galvez, and L. Badilla. Comparison of haemodynamics in cerebral aneurysms of different sizes located in the ophthalmic artery. Int. J. Numer. Methods Fluids 53(5):793–809, 2006.CrossRefGoogle Scholar
  41. 41.
    Valen-Sendstad, K., K.-A. Mardal, and D. A. Steinman. High-resolution computational fluid dynamics detects high-frequency velocity fluctuations in bifurcation, but not sidewall, aneurysms of the middle cerebral artery. J. Biomech. 2012.Google Scholar
  42. 42.
    Van Ooij, P., A. Guédon, C. Poelma, et al. Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics. NMR Biomed. 25(1):14–26, 2012.PubMedCrossRefGoogle Scholar
  43. 43.
    White, C. R., M. Haidekker, X. Bao, and J. A. Frangos. Temporal gradients in shear, but not spatial gradients, stimulate endothelial cell proliferation. Circulation 103(20):2508–2513, 2001.PubMedCrossRefGoogle Scholar
  44. 44.
    Willert, C., and M. Gharib. Digital particle image velocimetry. Exp. Fluids 10(4):181–193, 1991.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Trung B. Le
    • 1
  • Daniel R. Troolin
    • 2
  • Devesh Amatya
    • 3
  • Ellen K. Longmire
    • 3
  • Fotis Sotiropoulos
    • 1
    Email author
  1. 1.St. Anthony Falls Laboratory and Department of Civil EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.TSI Inc.MinneapolisUSA
  3. 3.Department of Aerospace EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations