Automated Micropipette Aspiration of Single Cells

  • 1959 Accesses

  • 42 Citations


This paper presents a system for mechanically characterizing single cells using automated micropipette aspiration. Using vision-based control and position control, the system controls a micromanipulator, a motorized translation stage, and a custom-built pressure system to position a micropipette (4 μm opening) to approach a cell, form a seal, and aspirate the cell into the micropipette for quantifying the cell’s elastic and viscoelastic parameters as well as viscosity. Image processing algorithms were developed to provide controllers with real-time visual feedback and to accurately measure cell deformation behavior on line. Experiments on both solid-like and liquid-like cells demonstrated that the system is capable of efficiently performing single-cell micropipette aspiration and has low operator skill requirements.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9


  1. 1.

    An, S. S., B. Fabry, X. Trepat, N. Wang, and J. J. Fredberg. Do biophysical properties of the airway smooth muscle in culture predict airway hyperresponsiveness? Am. J. Respir. Cell Mol. Biol. 35(1):55–64, 2006.

  2. 2.

    Bao, G., and S. Suresh. Cell and molecular mechanics of biological materials. Nat. Mater. 2(11):715–725, 2003.

  3. 3.

    Cross, S. E., Y.-S. Jin, J. Rao, and J. K. Gimzewski. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2(12):780–783, 2007.

  4. 4.

    Dougherty, E. R., and R. A. Lotufo. Hands-on Morphological Image Processing. Bellingham, WA: SPIE, 2003.

  5. 5.

    Evans, E., and A. Yeung. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56(1):151–160, 1989.

  6. 6.

    Fabry, B., G. Maksym, J. Butler, M. Glogauer, D. Navajas, and J. Fredberg. Scaling the microrheology of living cells. Phys. Rev. Lett. 87(14):1–4, 2001.

  7. 7.

    Hashimoto, K. A review on vision-based control of robot manipulators. Adv. Robotics 17(10):969–991, 2003.

  8. 8.

    Haupt, B. J., A. E. Pelling, and M. A. Horton. Integrated confocal and scanning probe microscopy for biomedical research. Sci. World J. 6:1609–1618, 2006.

  9. 9.

    Heinrich, V., and W. Rawicz. Automated, high-resolution micropipet aspiration reveals new insight into the physical properties of fluid membranes. Langmuir 21(5):1962–1971, 2005.

  10. 10.

    Hochmuth, R. M. Micropipette aspiration of living cells. J. Biomech. 33(1):15–22, 2000.

  11. 11.

    Kim, D.-H., P. K. Wong, J. Park, A. Levchenko, and Y. Sun. Microengineered platforms for cell mechanobiology. Annu. Rev. Biomed. Eng. 11:203–233, 2009.

  12. 12.

    Lee, G. Y. H., and C. T. Lim. Biomechanics approaches to studying human diseases. Trends Biotechnol. 25(3):111–118, 2007.

  13. 13.

    Leith, D. J., and W. E. Leithead. Survey of gain-scheduling analysis and design. Int. J. Control 73(11):1001–1025, 2000.

  14. 14.

    Lewis, J. P. Fast normalized cross-correlation. Vis. Interface 10(1):120–123, 1995.

  15. 15.

    Lim, C. T., E. H. Zhou, A. Li, S. R. K. Vedula, and H. X. Fu. Experimental techniques for single cell and single molecule biomechanics. Mater. Sci. Eng. C 26(8):1278–1288, 2006.

  16. 16.

    Lim, C. T., E. H. Zhou, and S. T. Quek. Mechanical models for living cells—a review. J. Biomech. 39:195–216, 2006.

  17. 17.

    Liu, X., Y. Wang, and Y. Sun. Cell contour tracking and data synchronization for real-time, high-accuracy micropipette aspiration. IEEE Trans. Autom. Sci. Eng. 6(3):536–543, 2009.

  18. 18.

    Lu, Z., C. Moraes, G. Ye, C. A. Simmons, and Y. Sun. Single cell deposition and patterning with a robotic system. PLoS ONE 5(10):e13542, 2010.

  19. 19.

    Merryman, W. D., P. D. Bieniek, F. Guilak, and M. S. Sacks. Viscoelastic properties of the aortic valve interstitial cell. J. Biomech. Eng. 131:041005, 2009.

  20. 20.

    Merryman, W. D., I. Youn, H. D. Lukoff, P. M. Krueger, F. Guilak, R. A. Hopkins, and M. S. Sacks. Correlation between heart valve interstitial cell stiffness and transvalvular pressure: implications for collagen biosynthesis. Am. J. Physiol. Heart Circ. Physiol. 290(1):H224–H231, 2006.

  21. 21.

    Mills, J. P., L. Qie, M. Dao, C. T. Lim, and S. Suresh. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech. Chem. Biosyst. 1(3):169–180, 2004.

  22. 22.

    Needham, D., and R. M. Hochmuth. Rapid flow of passive neutrophils into a 4 microns pipet and measurement of cytoplasmic viscosity. J. Biomech. Eng. 112(3):269–276, 1990.

  23. 23.

    Pravincumar, P., D. L. Bader, and M. M. Knight. Viscoelastic cell mechanics and actin remodelling are dependent on the rate of applied pressure. PLoS ONE 7:e43938, 2012.

  24. 24.

    Rugh, W. J., and J. S. Shamma. Research on gain scheduling. Automatica 36(10):1401–1425, 2000.

  25. 25.

    Sato, M., D. P. Theret, L. T. Wheeler, N. Ohshima, and R. M. Nerem. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J. Biomech. Eng. 112(3):263, 1990.

  26. 26.

    Schreier, R., and G. C. Temes. Understanding Delta–Sigma Data Converters, Vol. 22. Piscataway, NJ: Wiley-IEEE Press, p. 464, 2005.

  27. 27.

    Shao, J. Y., and R. M. Hochmuth. The resistance to flow of individual human neutrophils in glass capillary tubes with diameters between 4.65 and 7.75 microns. Microcirculation 4(1):61–74, 1997.

  28. 28.

    Simmons, C. A. Aortic valve mechanics: an emerging role for the endothelium. J. Am. Coll. Cardiol. 53(16):1456–1458, 2009.

  29. 29.

    Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 3(4):413–438, 2007.

  30. 30.

    Theret, D. P., M. J. Levesque, M. Sato, R. M. Nerem, and L. T. Wheeler. The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. J. Biomech. Eng. 110(3):190–199, 1988.

  31. 31.

    Tsai, M. A., R. S. Frank, and R. E. Waugh. Passive mechanical behavior of human neutrophils: power-law fluid. Biophys. J. 65(5):2078–2088, 1993.

  32. 32.

    Tsai, M. A., R. E. Waugh, and P. C. Keng. Cell cycle-dependence of HL-60 cell deformability. Biophys. J. 70(4):2023–2029, 1996.

Download references


The authors thank John Nguyen for helpful discussions and thank Haijiao Liu and Prof. Craig Simmons for PAVIC cell preparation. The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada and the Canada Research Chairs Program.

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Author information

Correspondence to Yu Sun.

Additional information

Associate Editor Scott I Simon oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (MP4 11752 kb)

Supplementary material 3 (MP4 21422 kb)

Supplementary material 1 (DOCX 573 kb)

Supplementary material 2 (MP4 11752 kb)

Supplementary material 3 (MP4 21422 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shojaei-Baghini, E., Zheng, Y. & Sun, Y. Automated Micropipette Aspiration of Single Cells. Ann Biomed Eng 41, 1208–1216 (2013) doi:10.1007/s10439-013-0791-9

Download citation


  • Robotic cell manipulation
  • Visual servoing
  • Biological cell characterization
  • Micropipette aspiration
  • Mechanical properties