Annals of Biomedical Engineering

, Volume 41, Issue 2, pp 385–397 | Cite as

The Effect of Osteochondral Regeneration Using Polymer Constructs and Continuous Passive Motion Therapy in the Lower Weight-Bearing Zone of Femoral Trocheal Groove in Rabbits

  • Nai-Jen Chang
  • Chih-Chan Lin
  • Chien-Feng Li
  • Kai Su
  • Ming-Long Yeh
Article

Abstract

Remedying patellofemoral osteochondral defects using clinical therapy remains challenging. Construct-based and cell-based regenerative medicine with in vitro physical stimuli has been progressively implemented. However, the effect of physical stimuli in situ in knee joints with degradable constructs is still not well-documented. Therefore, we studied whether it was practical to achieve articular cartilage repair using a poly(lactic-co-glycolic acid) (PLGA) construct in addition to early short-term continuous passive motion (CPM) for treatment of full-thickness osteochondral defects in the lower-weigh bearing (LWB) zone of the femoral trocheal groove. Twenty-six rabbits were randomly allocated into either intermittent active motion (IAM) or CPM treatment groups with or without PLGA constructs, termed PLGA construct-implanted (PCI) and empty defect knee models, respectively. Gross observation, histology, inflammatory cells, which were identified using H&E staining, total collagen and alignment, studied qualitatively using Masson’s trichrome staining, glycosaminoglycan (GAG), identified using Alcian blue staining, and newly formed bone, observed using micro-CT, were evaluated at 4 and 12 weeks after surgery. Repair of osteochondral defects in the PCI-CPM group was more promising than all other groups. The better osteochondral defect repair in the PCI-CPM group corresponded to smooth cartilage surfaces, no inflammatory reaction, hyaline cartilaginous tissues composition, sound collagen alignment with positive collagen type II expression, higher GAG content, mature bone regeneration with osteocyte, clear tidemark formation, and better degradation of PLGA. In summary, the use of a simple PLGA construct coupled with passive motion promotes positive healing and may be a promising clinical intervention for osteochondral regeneration in LWB defects.

Keywords

Cartilage Biomaterial Regenerative medicine Physical therapy Animal model 

Supplementary material

10439_2012_656_MOESM1_ESM.pdf (521 kb)
Supplementary material 1 (PDF 522 kb)

References

  1. 1.
    Arrigoni, E., S. Lopa, L. de Girolamo, D. Stanco, and A. T. Brini. Isolation, characterization and osteogenic differentiation of adipose-derived stem cells: from small to large animal models. Cell Tissue Res. 338:401–411, 2009.PubMedCrossRefGoogle Scholar
  2. 2.
    Chang, N. J., Y. R. Jhung, N. Issariyakul, C. K. Yao, and M. L. Yeh. Synergistic stimuli by hydrodynamic pressure and hydrophilic coating on PLGA scaffolds for extracellular matrix synthesis of engineered cartilage. J Biomater. Sci. Polym. Ed., 2011. doi:10.1163/092050611X092611648.
  3. 3.
    Chang, N. J., C. C. Lin, C. F. Li, N. Issariyakul, and M. L. Yeh. The combined effects of continuous passive motion treatment and acellular PLGA implants on osteochondral regeneration in the rabbit. Biomaterials 33:3153–3163, 2012.PubMedCrossRefGoogle Scholar
  4. 4.
    Chu, C. R., M. Szczodry, and S. Bruno. Animal models for cartilage regeneration and repair. Tissue Eng. B Rev. 16:105–115, 2010.CrossRefGoogle Scholar
  5. 5.
    Concaro, S., F. Gustavson, and P. Gatenholm. Bioreactors for tissue engineering of cartilage. Adv. Biochem. Eng. Biotechnol. 112:125–143, 2009.PubMedGoogle Scholar
  6. 6.
    Du Plessis, M., E. Eksteen, A. Jenneker, E. Kriel, C. Mentoor, T. Stucky, D. van Staden, and L. D. Morris. The effectiveness of continuous passive motion on range of motion, pain and muscle strength following rotator cuff repair: a systematic review. Clin. Rehabil. 25:291–302, 2011.PubMedCrossRefGoogle Scholar
  7. 7.
    Ferretti, M., A. Srinivasan, J. Deschner, R. Gassner, F. Baliko, N. Piesco, R. Salter, and S. Agarwal. Anti-inflammatory effects of continuous passive motion on meniscal fibrocartilage. J. Orthop. Res. 23:1165–1171, 2005.PubMedCrossRefGoogle Scholar
  8. 8.
    Grigolo, B., G. Lisignoli, G. Desando, C. Cavallo, E. Marconi, M. Tschon, G. Giavaresi, M. Fini, R. Giardino, and A. Facchini. Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit. Tissue Eng. C 15:647–658, 2009.CrossRefGoogle Scholar
  9. 9.
    Haasper, C., J. Zeichen, R. Meister, C. Krettek, and M. Jagodzinski. Tissue engineering of osteochondral constructs in vitro using bioreactors. Injury 39(Suppl. 1):S66–S76, 2008.PubMedCrossRefGoogle Scholar
  10. 10.
    Hinman, R. S., and K. M. Crossley. Patellofemoral joint osteoarthritis: an important subgroup of knee osteoarthritis. Rheumatology (Oxford) 46:1057–1062, 2007.CrossRefGoogle Scholar
  11. 11.
    Howard, J. S., C. G. Mattacola, S. E. Romine, and C. Lattermann. Continuous Passive Motion, Early Weight Bearing, and Active Motion following Knee Articular Cartilage Repair. Cartilage 1:276–286, 2010.CrossRefGoogle Scholar
  12. 12.
    Hunter, D. J., W. Harvey, K. D. Gross, D. Felson, P. McCree, L. Li, K. Hirko, B. Zhang, and K. Bennell. A randomized trial of patellofemoral bracing for treatment of patellofemoral osteoarthritis. Osteoarthritis Cartilage 19:792–800, 2011.PubMedCrossRefGoogle Scholar
  13. 13.
    Igarashi, T., N. Iwasaki, D. Kawamura, Y. Kasahara, Y. Tsukuda, N. Ohzawa, M. Ito, Y. Izumisawa, and A. Minami. Repair of articular cartilage defects with a novel injectable in situ forming material in a canine model. J. Biomed. Mater. Res. A 100:180–187, 2012.PubMedGoogle Scholar
  14. 14.
    Ikeda, R., H. Fujioka, I. Nagura, T. Kokubu, N. Toyokawa, A. Inui, T. Makino, H. Kaneko, M. Doita, and M. Kurosaka. The effect of porosity and mechanical property of a synthetic polymer scaffold on repair of osteochondral defects. Int. Orthop. 33:821–828, 2009.PubMedCrossRefGoogle Scholar
  15. 15.
    Im, G. I., H. J. Kim, and J. H. Lee. Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5,-6 and -9) genes. Biomaterials 32:4385–4392, 2011.PubMedCrossRefGoogle Scholar
  16. 16.
    Jin, C. Z., J. H. Cho, B. H. Choi, L. M. Wang, M. S. Kim, S. R. Park, J. H. Yun, H. J. Oh, and B. H. Min. The maturity of tissue-engineered cartilage in vitro affects the repairability for osteochondral defect. Tissue Eng. A 17:3057–3065, 2011.CrossRefGoogle Scholar
  17. 17.
    Kim, H. K., R. G. Kerr, T. F. Cruz, and R. B. Salter. Effects of continuous passive motion and immobilization on synovitis and cartilage degradation in antigen induced arthritis. J. Rheumatol. 22:1714–1721, 1995.PubMedGoogle Scholar
  18. 18.
    Kim, T. K., K. K. Park, S. W. Yoon, S. J. Kim, C. B. Chang, and S. C. Seong. Clinical value of regular passive ROM exercise by a physical therapist after total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 17:1152–1158, 2009.PubMedCrossRefGoogle Scholar
  19. 19.
    Kocher, M. S., R. Tucker, T. J. Ganley, and J. M. Flynn. Management of osteochondritis dissecans of the knee: current concepts review. Am. J. Sports Med. 34:1181–1191, 2006.PubMedCrossRefGoogle Scholar
  20. 20.
    Lu, L., S. J. Peter, M. D. Lyman, H. L. Lai, S. M. Leite, J. A. Tamada, S. Uyama, J. P. Vacanti, R. Langer, and A. G. Mikos. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Biomaterials 21:1837–1845, 2000.PubMedCrossRefGoogle Scholar
  21. 21.
    Mano, J. F., and R. L. Reis. Osteochondral defects: present situation and tissue engineering approaches. J. Tissue Eng. Regen. Med. 1:261–273, 2007.PubMedCrossRefGoogle Scholar
  22. 22.
    Martin, I., S. Miot, A. Barbero, M. Jakob, and D. Wendt. Osteochondral tissue engineering. J. Biomech. 40:750–765, 2007.PubMedCrossRefGoogle Scholar
  23. 23.
    Martin-Hernandez, C., J. Cebamanos-Celma, A. Molina-Ros, J. J. Ballester-Jimenez, and J. Ballester-Soleda. Regenerated cartilage produced by autogenous periosteal grafts: a histologic and mechanical study in rabbits under the influence of continuous passive motion. Arthroscopy 26:76–83, 2010.PubMedCrossRefGoogle Scholar
  24. 24.
    McWalter, E. J., D. J. Hunter, W. F. Harvey, P. McCree, K. A. Hirko, D. T. Felson, and D. R. Wilson. The effect of a patellar brace on three-dimensional patellar kinematics in patients with lateral patellofemoral osteoarthritis. Osteoarthritis Cartilage 19:801–808, 2011.PubMedCrossRefGoogle Scholar
  25. 25.
    O’Driscoll, S. W., and N. J. Giori. Continuous passive motion (CPM): Theory and principles of clinical application. J. Rehabil. Res. Dev. 37:179–188, 2000.PubMedGoogle Scholar
  26. 26.
    O’Driscoll, S. W., F. W. Keeley, and R. B. Salter. Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year. J. Bone Joint Surg. Am. 70:595–606, 1988.PubMedGoogle Scholar
  27. 27.
    O’Driscoll, S. W., and R. B. Salter. The induction of neochondrogenesis in free intra-articular periosteal autografts under the influence of continuous passive motion. An experimental investigation in the rabbit. J. Bone Joint Surg. Am. 66:1248–1257, 1984.PubMedGoogle Scholar
  28. 28.
    O’Driscoll, S. W., and R. B. Salter. The repair of major osteochondral defects in joint surfaces by neochondrogenesis with autogenous osteoperiosteal grafts stimulated by continuous passive motion. An experimental investigation in the rabbit. Clin. Orthop. Relat. Res. 208:131–140, 1986.PubMedGoogle Scholar
  29. 29.
    Oshima, Y., F. L. Harwood, R. D. Coutts, T. Kubo, and D. Amiel. Variation of mesenchymal cells in polylactic acid scaffold in an osteochondral repair model. Tissue Eng. C 15:595–604, 2009.CrossRefGoogle Scholar
  30. 30.
    Pascual-Garrido, C., M. A. Slabaugh, D. R. L’Heureux, N. A. Friel, and B. J. Cole. Recommendations and treatment outcomes for patellofemoral articular cartilage defects with autologous chondrocyte implantation: prospective evaluation at average 4-year follow-up. Am. J. Sports Med. 37:33S–41S, 2009.PubMedCrossRefGoogle Scholar
  31. 31.
    Riegger-Krugh, C. L., E. C. McCarty, M. S. Robinson, and D. A. Wegzyn. Autologous chondrocyte implantation: current surgery and rehabilitation. Med. Sci. Sports Exerc. 40:206–214, 2008.PubMedCrossRefGoogle Scholar
  32. 32.
    Rosen, J., E. Strauss, A. Schachter, and S. Frenkel. The efficacy of intra-articular hyaluronan injection after the microfracture technique for the treatment of articular cartilage lesions. Am. J. Sports Med. 37:720–726, 2009.PubMedCrossRefGoogle Scholar
  33. 33.
    Rudert, M. Histological evaluation of osteochondral defects: consideration of animal models with emphasis on the rabbit, experimental setup, follow-up and applied methods. Cells Tissues Organs 171:229–240, 2002.PubMedCrossRefGoogle Scholar
  34. 34.
    Salter, R. B. The biologic concept of continuous passive motion of synovial joints. The first 18 years of basic research and its clinical application. Clin. Orthop. Relat. Res. 242:12–25, 1989.PubMedGoogle Scholar
  35. 35.
    Salter, R. B., D. F. Simmonds, B. W. Malcolm, E. J. Rumble, D. Macmichael, and N. D. Clements. The biological effect of continuous passive motion on the healing of full-thickness defects in articular-cartilage—an experimental investigation in the rabbit. J. Bone Joint Surg. Am. 62:1232–1251, 1980.PubMedGoogle Scholar
  36. 36.
    Shao, X. X., D. W. Hutmacher, S. T. Ho, J. C. Goh, and E. H. Lee. Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials 27:1071–1080, 2006.PubMedCrossRefGoogle Scholar
  37. 37.
    Sun, S., Q. Ren, D. Wang, L. Zhang, S. Wu, and X. T. Sun. Repairing cartilage defects using chondrocyte and osteoblast composites developed using a bioreactor. Chin. Med. J. (Engl.) 124:758–763, 2011.Google Scholar
  38. 38.
    Sun, Y., Y. Feng, C. Q. Zhang, S. B. Chen, and X. G. Cheng. The regenerative effect of platelet-rich plasma on healing in large osteochondral defects. Int. Orthop. 34:589–597, 2010.PubMedCrossRefGoogle Scholar
  39. 39.
    Swieszkowski, W., B. H. Tuan, K. J. Kurzydlowski, and D. W. Hutmacher. Repair and regeneration of osteochondral defects in the articular joints. Biomol. Eng. 24:489–495, 2007.PubMedCrossRefGoogle Scholar
  40. 40.
    Taskiran, E., and C. Ozcelik. Autologous osteochondral transplantation. Acta Orthop. Traumatol. Turc. 41:70–78, 2007.PubMedGoogle Scholar
  41. 41.
    Thermann, H., C. Becher, and A. Driessen. Microfracture technique for the treatment of articular cartilage lesions of the talus. Orthopade. 37:196–203, 2008.PubMedCrossRefGoogle Scholar
  42. 42.
    Tok, F., K. Aydemir, F. Peker, I. Safaz, M. A. Taskaynatan, and A. Ozgul. The effects of electrical stimulation combined with continuous passive motion versus isometric exercise on symptoms, functional capacity, quality of life and balance in knee osteoarthritis: randomized clinical trial. Rheumatol. Int. 31:177–181, 2011.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang, W., B. Li, J. Yang, L. Xin, Y. Li, H. Yin, Y. Qi, Y. Jiang, H. Ouyang, and C. Gao. The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs. Biomaterials 31:8964–8973, 2010.PubMedCrossRefGoogle Scholar
  44. 44.
    Xie, J., Z. Han, M. Naito, A. Maeyama, S. H. Kim, Y. H. Kim, and T. Matsuda. Articular cartilage tissue engineering based on a mechano-active scaffold made of poly(l-lactide-co-epsilon-caprolactone): in vivo performance in adult rabbits. J. Biomed. Mater. Res. B 94:80–88, 2010.Google Scholar
  45. 45.
    Zhang, Y., F. Yang, K. Liu, H. Shen, Y. Zhu, W. Zhang, W. Liu, S. Wang, Y. Cao, and G. Zhou. The impact of PLGA scaffold orientation on in vitro cartilage regeneration. Biomaterials, 2012. doi:10.1016/j.biomaterials.2012.1001.1006.

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Nai-Jen Chang
    • 1
  • Chih-Chan Lin
    • 2
  • Chien-Feng Li
    • 3
  • Kai Su
    • 4
  • Ming-Long Yeh
    • 1
    • 5
  1. 1.Institute of Biomedical EngineeringNational Cheng Kung UniversityTainan CityTaiwan
  2. 2.Laboratory Animal Center, Department of Medical ResearchChi-Mei Medical CenterTainan CityTaiwan
  3. 3.Division of Clinical Pathology, Department of PathologyChi-Mei Medical CenterTainan CityTaiwan
  4. 4.Division of Bioengineering and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
  5. 5.Medical Device Innovation CenterNational Cheng Kung UniversityTainan CityTaiwan

Personalised recommendations