Advertisement

Effect of Focal Adhesion Proteins on Endothelial Cell Adhesion, Motility and Orientation Response to Cyclic Strain

  • 520 Accesses

  • 34 Citations

Abstract

Focal adhesion proteins link cell surface integrins and intracellular actin stress fibers and therefore play an important role in mechanotransduction and cell motility. When endothelial cells are subjected to cyclic mechanical strain, time-lapse imaging revealed that cells underwent significant morphological changes with their resultant long axes aligned away from the strain direction. To explore how this response is regulated by focal adhesion-associated proteins the expression levels of paxillin, focal adhesion kinase (FAK), and zyxin were knocked down using gene silencing techniques. In addition, rescue of endogenous and two mutant zyxins were used to investigate the specific role of zyxin interactions. Cells with decreased zyxin expression levels and rescue with the mutant lacking zyxin/α-actinin binding exhibited lower orientation angles after comparable times of stretching as compared to normal and control cells. However, knockdown of the expression levels of paxillin and FAK and rescue with the mutant lacking zyxin/VASP (vasodilator-stimulated phosphoprotein) binding did not significantly affect the degree of cell orientation. In addition, wound closure speed and cell–substratum adhesive strength were observed to be significantly reduced only for cells with zyxin depletion and the mutation lacking zyxin/α-actinin binding. These results suggest that zyxin and its interaction with α-actinin are important in the regulation of endothelial cell adhesive strength, motility and orientation response to mechanical stretching.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. 1.

    Brown, C. M., B. Hebert, D. L. Kolin, J. Zareno, L. Whitmore, A. R. Horwitz, and P. W. Wiseman. Probing the integrin-actin linkage using high-resolution protein velocity mapping. J. Cell Sci. 119(Pt 24):5204–5214, 2006.

  2. 2.

    Cattaruzza, M., C. Lattrich, and M. Hecker. Focal adhesion protein zyxin is a mechanosensitive modulator of gene expression in vascular smooth muscle cells. Hypertension 43(4):726–730, 2004.

  3. 3.

    Cozens-Roberts, C., J. A. Quinn, and D. A. Lauffenberger. Receptor-mediated adhesion phenomena. Model studies with the radical-flow detachment assay. Biophys. J. 58(1):107–125, 1990.

  4. 4.

    Crawford, A. W., and M. C. Beckerle. Purification and characterization of zyxin, an 82,000-dalton component of adherens junctions. J. Biol. Chem. 266(9):5847–5853, 1991.

  5. 5.

    Crawford, A. W., J. W. Michelsen, and M. C. Beckerle. An interaction between zyxin and alpha-actinin. J. Cell Biol. 116(6):1381–1393, 1992.

  6. 6.

    Dickinson, R. B., and R. T. Tranquillo. Optimal estimation of cell movement indices from the statistical analysis of cell tracking data. AIChE J. 39:1995–2010, 1993.

  7. 7.

    DiMilla, P. A., J. A. Stone, J. A. Quinn, S. M. Albelda, and D. A. Lauffenburger. Maximal migration of human smooth muscle cells on fibronectin and type iv collagen occurs at an intermediate attachment strength. J. Cell Biol. 122(3):729–737, 1993.

  8. 8.

    Goldstein, A. S., and P. A. DiMilla. Application of fluid mechanics and kinetic models to characterize mammalian cell detachment in a radial-flow chamber. Biotech. Bioeng. 55(4):616–629, 1997.

  9. 9.

    Goldstein, A. S., and P. A. DiMilla. Comparison of converging and diverging radial flow for measuring cell adhesion. AIChE J. 44(2):465–473, 1998.

  10. 10.

    Hagel, M., E. L. George, A. Kim, R. Tamimi, S. L. Opitz, C. E. Turner, A. Imamoto, and S. M. Thomas. The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol. Cell. Biol. 22(3):901–915, 2002.

  11. 11.

    Harms, B. D., G. M. Bassi, A. R. Horwitz, and D. A. Lauffenburger. Directional persistence of egf-induced cell migration is associated with stabilization of lamellipodial protrusions. Biophys. J. 88(2):1479–1488, 2005.

  12. 12.

    Hayakawa, K., A. Hosokawa, K. Yabusaki, and T. Obinata. Orientation of smooth muscle-derived a10 cells in culture by cyclic stretching: relationship between stress fiber rearrangement and cell reorientation. Zool. Sci. 17(5):617–624, 2000.

  13. 13.

    Hoffman, L. M., C. C. Jensen, S. Kloeker, C. L. Wang, M. Yoshigi, and M. C. Beckerle. Genetic ablation of zyxin causes mena/vasp mislocalization, increased motility, and deficits in actin remodeling. J. Cell Biol. 172(5):771–782, 2006.

  14. 14.

    Iba, T., and B. E. Sumpio. Morphological response of human endothelial cells subjected to cyclic strain in vitro. Microvasc. Res. 42(3):245–254, 1991.

  15. 15.

    Ilic, D., Y. Furuta, S. Kanazawa, N. Takeda, K. Sobue, N. Nakatsuji, S. Nomura, J. Fujimoto, M. Okada, and T. Yamamoto. Reduced cell motility and enhanced focal adhesion contact formation in cells from fak-deficient mice. Nature 377(6549):539–544, 1995.

  16. 16.

    Lee, N. P., D. D. Mruk, A. M. Conway, and C. Y. Cheng. Zyxin, axin, and wiskott-aldrich syndrome protein are adaptors that link the cadherin/catenin protein complex to the cytoskeleton at adherens junctions in the seminiferous epithelium of the rat testis. J. Androl. 25(2):200–215, 2004.

  17. 17.

    Li, B., and B. Trueb. Analysis of the alpha-actinin/zyxin interaction. J. Biol. Chem. 276(36):33328–33335, 2001.

  18. 18.

    Lu, L., Y. Feng, W. J. Hucker, S. J. Oswald, G. D. Longmore, and F. C. Yin. Actin stress fiber pre-extension in human aortic endothelial cells. Cell Motil. Cytoskeleton 65(4):281–294, 2008.

  19. 19.

    Moody, J. D., J. Grange, M. P. Ascione, D. Boothe, E. Bushnell, and M. D. Hansen. A zyxin head-tail interaction regulates zyxin-vasp complex formation. Biochem. Biophys. Res. Commun. 378(3):625–628, 2009.

  20. 20.

    Ngu, H., L. Lu, S. J. Oswald, S. Davis, S. Nag, and F. C. Yin. Strain-induced orientation response of endothelial cells: effect of substratum adhesiveness and actin-myosin contractile level. Mol. Cell. Biomech. 5(1):69–81, 2008.

  21. 21.

    Nix, D. A., and M. C. Beckerle. Nuclear-cytoplasmic shuttling of the focal contact protein, zyxin: a potential mechanism for communication between sites of cell adhesion and the nucleus. J. Cell Biol. 138(5):1139–1147, 1997.

  22. 22.

    Nix, D. A., J. Fradelizi, S. Bockholt, B. Menichi, D. Louvard, E. Friederich, and M. C. Beckerle. Targeting of zyxin to sites of actin membrane interaction and to the nucleus. J. Biol. Chem. 276(37):34759–34767, 2001.

  23. 23.

    O’Neill, G. M., S. J. Fashena, and E. A. Golemis. Integrin signalling: a new cas(t) of characters enters the stage. Trends Cell Biol. 10(3):111–119, 2000.

  24. 24.

    Owatverot, T. B., S. J. Oswald, Y. Chen, J. J. Wille, and F. C. Yin. Effect of combined cyclic stretch and fluid shear stress on endothelial cell morphological responses. J. Biomech. Eng. 127(3):374–382, 2005.

  25. 25.

    Palecek, S. P., J. C. Loftus, M. H. Ginsberg, D. A. Lauffenburger, and A. F. Horwitz. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385(6616):537–540, 1997.

  26. 26.

    Peel, M. M., and P. A. DiMilla. Effect of cell–cell interactions on the observable strength of adhesion of sheets of cells. Ann. Biomed. Eng. 27(2):236–246, 1999.

  27. 27.

    Reinhard, M., J. Zumbrunn, D. Jaquemar, M. Kuhn, U. Walter, and B. Trueb. An alpha-actinin binding site of zyxin is essential for subcellular zyxin localization and alpha-actinin recruitment. J. Biol. Chem. 274(19):13410–13418, 1999.

  28. 28.

    Shirinsky, V. P., A. S. Antonov, K. G. Birukov, A. V. Sobolevsky, Y. A. Romanov, N. V. Kabaeva, G. N. Antonova, and V. N. Smirnov. Mechano-chemical control of human endothelium orientation and size. J. Cell Biol. 109(1):331–339, 1989.

  29. 29.

    Wang, H. B., M. Dembo, S. K. Hanks, and Y. Wang. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc. Natl Acad. Sci. USA 98(20):11295–11300, 2001.

  30. 30.

    Wang, J. H., P. Goldschmidt-Clermont, N. Moldovan, and F. C. Yin. Leukotrienes and tyrosine phosphorylation mediate stretching-induced actin cytoskeletal remodeling in endothelial cells. Cell Motil. Cytoskeleton 46(2):137–145, 2000.

  31. 31.

    Wang, J. H., P. Goldschmidt-Clermont, and F. C. Yin. Contractility affects stress fiber remodeling and reorientation of endothelial cells subjected to cyclic mechanical stretching. Ann. Biomed. Eng. 28(10):1165–1171, 2000.

  32. 32.

    Wille, J. J., C. M. Ambrosi, and F. C. Yin. Comparison of the effects of cyclic stretching and compression on endothelial cell morphological responses. J. Biomech. Eng. 126(5):545–551, 2004.

  33. 33.

    Yano, H., Y. Mazaki, K. Kurokawa, S. K. Hanks, M. Matsuda, and H. Sabe. Roles played by a subset of integrin signaling molecules in cadherin-based cell–cell adhesion. J. Cell Biol. 166(2):283–295, 2004.

  34. 34.

    Yi, J., S. Kloeker, C. C. Jensen, S. Bockholt, H. Honda, H. Hirai, and M. C. Beckerle. Members of the zyxin family of lim proteins interact with members of the p130cas family of signal transducers. J. Biol. Chem. 277(11):9580–9589, 2002.

  35. 35.

    Yoshigi, M., L. M. Hoffman, C. C. Jensen, H. J. Yost, and M. C. Beckerle. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J. Cell Biol. 171(2):209–215, 2005.

  36. 36.

    Yung, L. Y., R. W. Colman, and S. L. Cooper. Neutrophil adhesion on polyurethanes preadsorbed with high molecular weight kininogen. Blood 94(8):2716–2724, 1999.

Download references

Acknowledgments

This research was supported by a grant-in-aid from the American Heart Association (PI: FCPY).

Author information

Correspondence to Frank C.-P. Yin.

Additional information

Hai Ngu and Yunfeng Feng contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Representative time-lapse movie (5 min increments) of wildtype cells during six-hours of cyclic uniaxial (horizontal direction) stretching. These are expanded views of the upper right-hand corner of the wide field shown in supplementary movie 2 and correspond to the images in Fig. 2a (AVI 21660 kb)

Representative time-lapse movie (5 min increments) of wildtype cells during six-hours of cyclic uniaxial (horizontal direction) stretching (AVI 77901 kb)

Representative time-lapse movie (5 min increments) of zyxin knockdown (Zn-sh1) cells during six-hours of cyclic uniaxial (horizontal direction) stretching (AVI 74883 kb)

Supplementary Movie 1

Representative time-lapse movie (5 min increments) of wildtype cells during six-hours of cyclic uniaxial (horizontal direction) stretching. These are expanded views of the upper right-hand corner of the wide field shown in supplementary movie 2 and correspond to the images in Fig. 2a (AVI 21660 kb)

Supplementary Movie 2

Representative time-lapse movie (5 min increments) of wildtype cells during six-hours of cyclic uniaxial (horizontal direction) stretching (AVI 77901 kb)

Supplementary Movie 3

Representative time-lapse movie (5 min increments) of zyxin knockdown (Zn-sh1) cells during six-hours of cyclic uniaxial (horizontal direction) stretching (AVI 74883 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ngu, H., Feng, Y., Lu, L. et al. Effect of Focal Adhesion Proteins on Endothelial Cell Adhesion, Motility and Orientation Response to Cyclic Strain. Ann Biomed Eng 38, 208–222 (2010). https://doi.org/10.1007/s10439-009-9826-7

Download citation

Keywords

  • Cell stretching
  • Cell orientation
  • Gene silencing
  • Zyxin
  • Focal adhesion
  • Time-lapse imaging