Advertisement

Lithic Technology at Loiyangalani, a Late Middle Stone Age Site in the Serengeti, Tanzania

  • José-Manuel Maíllo-FernándezEmail author
  • Irene Solano-Megías
  • Audax Z. P. Mabulla
  • Mari Carmen Arriaza
  • John F. R. Bower
Original Article

Abstract

Loiyangalani is important to the understanding of human occupation patterns in the Serengeti and Northern Tanzania during the Middle Stone Age in terms of food-processing activities and lithic technology. The abundant faunal remains at the site show that it was used for game processing. The lithic technology was based on prepared core methods, dominated by the discoid and Levallois types, for the production of flakes. The retouched tools found at the site (scrapers, denticulates, and notches) are characteristic of activities associated with animal butchering while those connected with hunting activities are scarce. Some previous studies proposed that the Middle Stone Age occupation at Loiyangalani represents an independent industry in the region since the techno-typological differences noted between it and the neighboring sites are quite striking. We revisit this hypothesis by using three approaches—taphonomy, typology, and technology—for analyzing the MSA assemblage in Loiyangalani. We then compare the data from these three analyses with two other MSA industries in Northern Tanzania—Mumba and Nasera. Using principal component and cluster analyses to evaluate the typological and technological variation in these three industries, we show the patterns of differences and similarities among them and offer explanations for these patterns.

Keywords

Lithic technology Middle Stone Age (MSA) Serengeti Tanzania East Africa 

Résumé

Loiyangalani est important pour comprendre les modèles d’occupation humaine dans le Serengeti et le nord de la Tanzanie au Paléolithique moyen (MSA), en termes d’activités de transformation des aliments et de technologie lithique. Les restes de faune abondants découverts sur le site montrent qu’il a été utilisé pour le traitement du gibier. La technologie lithique reposait sur la production des éclats par des méthodes de base préparées, dominées par les types discoïde et Levallois. Les outils retouchés trouvés sur le site (grattoirs, denticulés et entailles) sont caractéristiques des activités associées au dépeçage d’animaux, tandis que ceux liés aux activités de chasse sont rares. Certaines des études précédentes ont suggéré que l’occupation de Loiyangalani au Paléolithique moyen représentait une industrie indépendante dans la région, car les différences techno-typologiques observées entre celle-ci et les autres sites voisins sont assez frappantes. Nous revoyons cette hypothèse dans l’article en utilisant trois approches - la taphonomie, la typologie et la technologie - pour analyser l’assemblage de MSA à Loiyangalani. Nous comparons ensuite les données de ces trois analyses avec deux autres industries MSA du nord de la Tanzanie---Mumba et Nasera. En utilisant des analyses en composantes principales et en grappes pour évaluer les variations typologiques et technologiques de ces trois industries, nous montrons les modèles de différences et de similitudes entre eux et proposons des explications pour ces modèles.

Notes

Acknowledgments

We thank Tanzania's Commission for Science and Technology (COSTECH) for the permission to carry out the work. We would like to express our heartfelt thanks to the Department of Archaeology and Heritage Studies at the University of Dar es Salaam, particularly to Dr. Enmanuel Kessi and to Dr. Pastory Bushozi. We especially thank Dr. Agness Gidna for her support and assistance throughout the process of material study. The support of the DST-NRF Centre of Excellence in Palaeosciences (CoE-Pal) towards this research is also acknowledged. Opinions expressed and conclusions arrived at are those of the authors. We thank the three anonymous reviewers for their suggestions and comments on the manuscript. We also thank Pía Spry-Marqués for her help in editing an earlier version of this manuscript.

Funding Information

This study was conducted with the funding of the project HAR2015-64407-P MINECO/FEDER UE, and one of us (J. M. M. F.) received the Salvador Madariaga grant PRX15/00542 of the Spanish Ministry of Education, Culture and Sport.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10437_2019_9340_MOESM1_ESM.docx (46 kb)
ESM 1 (DOCX 46 kb)

References

  1. Ahler, S. A. (1983). Heat treatment of Knife River flint. Lithic Technology, 12, 1–8.CrossRefGoogle Scholar
  2. Amick, D. S. (2015). The recycling of material culture today and during the Paleolithic. Quaternary International, 361, 4–20.CrossRefGoogle Scholar
  3. Audouze, F., & Karlin, C. (2017). La chaîne opératoire a 70 ans: Qu’en ont fait les préhistoriens français. Journal of Lithic Studies, 4(2), 1–69.  https://doi.org/10.2218/jls.v4i2.2539.CrossRefGoogle Scholar
  4. Bar-Yosef, O., & Van Peer, P. (2009). The chaîne opératoire approach in Middle Paleolithic archaeology. Current Anthropology, 50(1), 103–131.CrossRefGoogle Scholar
  5. Basell, L. (2013). The Middle Stone Age of Eastern Africa. In P. Mitchel & P. Lane (Eds.), The Oxford handbook of African archaeology (pp. 387–401). Oxford: Oxford University Press.Google Scholar
  6. Baumler, M. F. (1985). On the interpretation of chipping debris concentrations in the archaeological record. Lithic Technology, 14(3), 120–125.CrossRefGoogle Scholar
  7. Behm, J. A. (1983). Flake concentrations: Distinguishing between flint working activity areas and secondary deposits. Lithic Technology, 12(1), 9–16.CrossRefGoogle Scholar
  8. Behm, J. A. (1985). An experimentation of the effects of slope wash on primary deposits of chipping debris: A reply to Baumler. Lithic Technology, 14(3), 126–129.CrossRefGoogle Scholar
  9. Bernaldo de Quirós, F., Cabrera, V., Cacho, C., & Vega, L. G. (1981). Proyecto de análisis técnico para las industrias líticas. Trabajos de Prehistoria, 38, 9–37.Google Scholar
  10. Bleed, P. (2001). Trees or chains, links or branches: Conceptual alternatives for consideration of stone tool production and other sequential activities. Journal of Archaeological Method and Theory, 8, 101–127.CrossRefGoogle Scholar
  11. Blegen, N., Faith, J. T., Mant-Melville, A., Peppe, D. J., & Tryon, C. A. (2017). The Middle Stone Age after 50,000 years ago: New evidence from the Late Pleistocene sediments of the Eastern Lake Victoria Basin, Western Kenya. Paleoanthropology, 2017, 139–169.  https://doi.org/10.4207/PA.2017.ART108.Google Scholar
  12. Boëda, E. (1993). Le débitage discoide et le débitage levallois récurrent centripéte. Bulletin de la Société Préhistorique Francaise, 90(6), 392–404.CrossRefGoogle Scholar
  13. Boëda, E. (1994). Le Concept Levallois: Variabilité des Méthodes. Paris: Monographie du C.R.A..Google Scholar
  14. Boëda, E. (1995). Caractéristiques techniques des chaînes opératoires lithiques des niveaux micoquiens de Külna (Tchécoslovaquie). Actes du colloque Les industries à pointes foliacées d’Europe Centrale, Miscolk 1991. Paléo, Supplément, 1, 57–72.Google Scholar
  15. Boëda, E., Geneste, J. M., & Meignen, L. (1990). Identification de chaînes opératoires lithiques du Paléolithique ancien et moyen. Paléo, 2, 43–80.CrossRefGoogle Scholar
  16. Bower, J. R. F. (1977). Preliminary report of a study of prehistoric cultures of the Serengeti National Park. Nyame Akuma, 11, 20–27.Google Scholar
  17. Bower, J. R. F., & Gogan-Porter, P. (1981). Prehistoric cultures of the Serengeti National Park, Tanzania (p. 3). Iowa: Papers in Anthropology.Google Scholar
  18. Bower, J. R. F., Mabulla, A. Z. P. (2008). Settling in: Evidence of territorial exclusion in the Late Middle Stone Age of Northern Tanzania. SAFA abstract book, 12 pages.Google Scholar
  19. Bower, J. R. F., & Mabulla, A. (2012). Settling in: Evidence of territorial exclusion in the Late Middle Stone Age of Northern Tanzania. Studies in the African Past, 11, 7–24.Google Scholar
  20. Bower, J. R. F., Gifford, D., & Livingstone, D. (1985). Excavations at the Loiyangalani site, Serengeti National Park, Tanzania. National Geographic Society Research Reports (1979 projects), 20, 41–56.Google Scholar
  21. Bower, J. R. F., Mabulla, A. Z. P., & Kobusiewicz, M. (2012). Loiyangalani: A cultural isolate in the Middle Stone Age of Northern Tanzania. Studies in African Archaeology, 11, 479–491.Google Scholar
  22. Brooks, A. S., Yellen, J. E., Potts, R., Behrensmeyer, A. K., Deino, A. L., et al. (2018). Long-distance stone transport and pigment use in the earliest Middle Stone Age. Science.  https://doi.org/10.1126/science.aao2646.
  23. Butzer, K. W. (1982). Archaeology as human ecology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. Clark, J. D. (1988). The Middle Stone Age of East Africa and the beginnings of regional identity. Journal of World Prehistory, 2(3), 235–303.CrossRefGoogle Scholar
  25. Commont, V. (1913). Les hommes contemporains du renne dans la valle de la Somme. París: Société Prehistorique Française.Google Scholar
  26. Cotterel, B., & Kamminga, J. (1987). The formation of flakes. American Antiquity, 52(4), 675–708.CrossRefGoogle Scholar
  27. Courtin, J., & Villa, P. (1982). Une expérience de piétinement. Bulletin de la Société Préhistorique Francaise, 79(4), 117–123.CrossRefGoogle Scholar
  28. Crabtree, D. E. (1972). An introduction to flint working. Pocatello: Occasional Papers of the Idaho State University.Google Scholar
  29. De la Peña, P. (2015a). The interpretation of bipolar knapping in African Stone Age studies. Current Anthropology, 56(6), 911–923.CrossRefGoogle Scholar
  30. De la Peña, P. (2015b). A qualitative guide to recognize bipolar knapping for flint and quartz. Lithic Technology, 40(4), 1–16.Google Scholar
  31. De la Peña, P., & Wadley, L. (2014). Quartz knapping strategies in the Howiesons Poort at Sibudu (KwaZulu-Natal, South Africa). PLoS One, 9(7), e101534.  https://doi.org/10.1371/journal.pone.0101534.CrossRefGoogle Scholar
  32. De la Peña, P., Taipale, N., Wadley, L., & Rot, V. (2018). A techno-functional perspective on quartz micro-notches in Sibudu’s Howiesons Poort indicates the use of barbs in hunting technology. Journal of Archaeological Science, 93, 166–195.CrossRefGoogle Scholar
  33. Deino, A. L., Behrensmeyer, A. K., Brooks, A. S., Yellen, J. E., Sharp, W. D., & Potts, R. (2018). Chronology of the Acheulean to Middle Stone Age transition in eastern Africa. Science, 360(6384), 95–98.  https://doi.org/10.1126/science.aao2216.CrossRefGoogle Scholar
  34. Delage, C. (2017). Once upon a time…the (hi)story of the concept of the chaîne opératoire in French prehistory. World Archaeology, 49(2), 158–173.  https://doi.org/10.1080/00438243.2017.1300104.CrossRefGoogle Scholar
  35. Díez-Martín, F., Domínguez-Rodrigo, M., Sánchez, P., Mabulla, A.Z.P., Tarriño, A., et al. (2009). The Middle to Later Stone Age technological transition in East Africa. New data from Mumba rockshelter Bed V (Tanzania) and their implications for the origin of modern human behavior. Journal of African Archaeology, 7(2), 147–173.Google Scholar
  36. Díez-Martín, F., Sánchez-Yustos, P., Domínguez-Rodrigo, M., & Prendergast, M. (2011). An experimental study of bipolar and freehand knapping of Naibor Soit quartz from Olduvai Gorge (Tanzania). American Antiquity, 76(4), 690–708.CrossRefGoogle Scholar
  37. Domínguez-Rodrigo, M., Díez-Martín, F., Mabulla, A., Luque, L., Alcalá, L., et al. (2007). The archaeology of the Middle Pleistocene deposits of Lake Eyasi, Tanzania. Journal of African Archaeology, 5(1), 47–78.Google Scholar
  38. Dunnell, R. C., & Stein, J. K. (1989). Theoretical issues in the interpretation of microartifacts. Geoarchaeology: An International Journal, 4(1), 31–42.CrossRefGoogle Scholar
  39. Eren, M. I., Durant, A. J., Prendergast, M., & Mabulla, A. (2014). Middle Stone Age archaeology at Olduvai Gorge, Tanzania. Quaternary International, 322-323, 292–313.CrossRefGoogle Scholar
  40. Fairbairn, P. E., & Robertson, R. H. S. (1972). The descomposición of flint. Scoth Journal Science, 1, 165–174.Google Scholar
  41. Fladmark, K. R. (1982). Microdebitage analysis: Initial considerations. Journal of Archaeological Science, 9, 205–220.CrossRefGoogle Scholar
  42. Gamble, C. (1999). The Palaeolithic societies of Europe. Cambridge: Cambridge University Press..Google Scholar
  43. Gifford-González, D. P., Damrosch, D. B., Damrosch, D. R., Pryor, J., & Thunen, R. L. (1985). The third dimension in site structure: An experiment in trampling and vertical dispersal. American Antiquity, 50(4), 803–818.CrossRefGoogle Scholar
  44. Gliganic, L. A., Jacobs, Z., Roberts, R. G., Domínguez-Rodrigo, M., & Mabulla, A. (2012). New ages for Middle and Later Stone Age deposits at Mumba rockshelter, Tanzania: Optically stimulated luminiscence dating of quartz and feldspar grains. Journal of Human Evolution, 62, 533–547.CrossRefGoogle Scholar
  45. Goodwin, A. J. H. (1929). The Stone Ages in South Africa. Africa: Journal of the International African Institute, 2(2), 174–182.CrossRefGoogle Scholar
  46. Goodwin, A. J. H., & van Riet Lowe, C. (1929). The Stone Age cultures of South Africa. Annual of South African Museum, 27, 1–289.Google Scholar
  47. Gouëdo, J.-M. (1990). Les technologies lithiques du Châtelperronien de la couche X de la Grotte du Renne d'Arcy-sur-Cure. In C. Farizy (Ed.), Paléolithique moyen récent et Paléolithique supérieur ancien en Europe (pp. 305–308). Nemours: Mémoires du Musée de Préhistoire d'Ile-de-France 3.Google Scholar
  48. Guilbaud, M. (1986). Élaboration d'un cadre morphotechnique par l'étude du débitage en typologie analytique, de quelques industries des gisements de Saint-Césaire (Charente-Maritime) et de Quincay (Vienne). In Ministere de L'education Nationale (Ed.), Actes du 111° Congrès national des Sociétés savantes, Pré- et Protohistoire, Poitiers (pp. 103–113). Commission de pré-et protohistoire. Paris: CTHS.Google Scholar
  49. Gurtov, A. N., Buchanan, B., & Eren, M. I. (2015). “Dissecting” quartzite and basalt bipolar flake shape: A morphometric comparison of experimental replications from Olduvai Gorge, Tanzania. Lithic Technology, 40(4), 332–341.CrossRefGoogle Scholar
  50. Haudricourt, A.-G. (1964). La technologie, science humaine. La Pensée, 115, 28–35.Google Scholar
  51. Hay, R. (1987). Geology of the Laetoli area. In M. D. Leakey and J. M. Harris (eds.), Laetoli: A Pliocene site in Northern Tanzania (pp. 23–47). Oxford: Claredon Press.Google Scholar
  52. Hublin, J-J., Ben-Ncer, A., Bailey, S. E., Freidline, S. E., Neubauer, S., et al. (2017). New fossils from Jebel Irhoud, Morocco and the Pan-African origin of Homo sapiens, Nature 546, 286–292.Google Scholar
  53. Hughes, P. J., & Lampert, R. J. (1977). Occupational disturbance and types of archaeological deposits. Journal of Archaeological Science, 4, 135–140.CrossRefGoogle Scholar
  54. Hull, K. L. (1987). Identification of cultural site formation processes through microdebitage analysis. American Antiquity, 54(2), 772–783.CrossRefGoogle Scholar
  55. Inizan, M.-L., Reduron, M., Roche, H., & Tixier, J. (1995). Technologie de la Pierre taillée. Paris: C.R.E.P.Google Scholar
  56. Karlin, C., Bodu, P., & Pelegrin, J. P. (1992). Processus techniques et chaînes opératoires: Comment les préhistoriens s’appropient un concept élaboré par les ethnologues. In P. Balfet (Ed.), Observer l’action technique: Des chaînes opératoires, pour quoi faire? (pp. 101–117). Paris: CNRS.Google Scholar
  57. Lancaster, J. (1986). Wind action on stone artifacts: An experiment in site modification. Journal of Field Archaeology, 13, 359–363.Google Scholar
  58. Leakey, M. D., Hay, R. L., Thurber, D. L., Protsch, R., & Berger, R. (1972). Stratigraphy, archaeology and age of the Ndutu and Naisiusiu beds, Olduvai Gorge, Tanzania. World Archaeology, 3, 328–341.CrossRefGoogle Scholar
  59. Lemmonier, P. (1983). L’étude des systemes techniques, une urgence en Technologie Culturelle. Techniques et Culture, 1, 11–26.Google Scholar
  60. Lenoir, M. (2008). Typologie et technologie: Alliees ou opposees? In Th. Aubry, F. Almeida, A. C. Araújo, & M. Tiffagom (Eds.), Typology versus technology (pp. 115–122). British Archaeological Reports, 1831. Oxford: Archaeopress.Google Scholar
  61. Leroi-Gourhan, A. (1943). Evolution et techniques I: L’homme et la matière. Paris: Albin Michel (reprint in 1971).Google Scholar
  62. Leroi-Gourhan, A. (1964). Le geste et la parole I: Technique et langage. Paris: Albin Michel.Google Scholar
  63. Levi-Sala, I. (1986). Use wear and post-depositional surface modifications: A word of caution. Journal of Archaeological Science, 13, 229–244.CrossRefGoogle Scholar
  64. Li, H., Kuman, K., Lotter, M. G., Leader, G. M., & Gibbon, R. J. (2017). The Victoria West: Earliest prepared core technology in the Acheulean at Canteen Kopje and implications for the cognitive evolution of early hominids. Royal Society Open Science, 4(6), 170288.  https://doi.org/10.1098/rsos.170288.CrossRefGoogle Scholar
  65. Luedtke, B. E. (1992). An archaeologist’s guide to chert and flint. Archaeological Research Tools, 7. Los Angeles: Institute of Archaeology, University of California.Google Scholar
  66. Mabulla, A. (1990). Preliminary report on an archaeological survey of the Ndutu Beds, Olduvai Gorge, Tanzania. Nyame Akuma, 33, 20–25.Google Scholar
  67. Mabulla, A. (1996). Middle and Later Stone Age land-use and lithic technology in the Eyasi Basin, Tanzania. Ph.D. dissertation, The University of Florida, Gainesville.Google Scholar
  68. Mabulla, A. (2015). Middle Pleistocene lithic industry and hominin behavior at Laetoli. Africana Studia, 24(1), 13–32.Google Scholar
  69. Maíllo-Fernández, J. M. (1998). Proporciones de debris en réplicas de talla experimental. Espacio, Tiempo y Forma, Serie I, 11, 45–55.Google Scholar
  70. Manega, P. (1993). Geochronology, geochemistry, and isotopic study of the Pliopleistocene hominid sites and the Ngorongoro Volcanic Highland in Northern Tanzania. Ph.D. dissertation. The University of Colorado at Boulder.Google Scholar
  71. Masao, F. T. (2008). A Middle Stone Age/Later Stone Age industry from Buzwagi, Kahama, Shinyanga Region, Tanzania: Results of cultural impact assessment. Nyame Akuma, 70, 30–48.Google Scholar
  72. Masele, F. (2017). Middle Stone Age hominin foraging ecology in Tanzania: An Archaeozoological study of the Loiyangalani Open-Air site and Magubike Rockshelter. Ph.D., University of Alberta, Edmonton.Google Scholar
  73. McBrearty, S., & Brooks, A. (2000). The revolution that wasn’t: A new interpretation of the origin of modern human behavior. Journal of Human Evolution, 39(5), 453–563.CrossRefGoogle Scholar
  74. McBrearty, S., Bishop, L., Plummer, T., Dewar, R., & Conard, N. (1998). Tools underfoot: Human trampling as an agent of lithic artifacts edge damage. American Antiquity, 63(1), 108–129.CrossRefGoogle Scholar
  75. Melhman, M. J. (1989). Late Quaternary archaeological sequences in Northern Tanzania. Ph.D. dissertation, University of Illinois, Urbana-Champaign.Google Scholar
  76. Mourre, V. (2003). Discoïde ou pas discoïde ? Réflexions sur la pertinence des critères techniques définissant le débitage discoïde. In M. Peresani (Ed.), Discoid lithic technology. Advances and implications (pp. 19–32). B.A.R. International Series 1120. Oxford: Archaeopress.Google Scholar
  77. Mturi, A. A. (1976). New hominid from Lake Ndutu, Tanzania. Nature, 262, 484–485.CrossRefGoogle Scholar
  78. Patterson, L. W., & Sollberger, J. B. (1978). Replication and classification of small size lithic debitage. Plains Anthropologist, 23, 103–112.CrossRefGoogle Scholar
  79. Pedraza, J. (1996). Geomorfología. Principios, métodos y aplicaciones. Madrid: Editorial Rueda.Google Scholar
  80. Peresani, M. (Ed.) (2003). Discoid lithic technology: Advances and implications. B.A.R. International Series 1120. Oxford: Archaeopress.Google Scholar
  81. Perlès, C. (1991). Économie des matières premières et économie du débitage: deux conceptions opposés? In Juan-les-Pins (Ed.), 25 Ans d’études technologiques en Préhistoire: Bilan et perspectives, Actes des XI" rencontres inter nationales d'Archéologie et d'Histoire d'Antibes, 18–20 octobre 1990 (pp. 35–45). Valbonne: APDCA.Google Scholar
  82. Richter, D., Grün, R., Joannes-Boyau, R., Steele, T. E., Amani, F., et al. (2017). The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age. Nature, 546, 293–296.CrossRefGoogle Scholar
  83. Röttlander, R. (1975). The formation of patina on flint. Archaeometry, 17, 106–110.CrossRefGoogle Scholar
  84. Sahle, Y., Hutchings, W. K., Braun, D. R., Sealy, J. C., Morgan, L. E., et al. (2013). Earliest stone-tipped projectiles from the Ethiopian Rift date to >279,000 years ago. PLoS One, 8(11), e78092.  https://doi.org/10.1371/journal.pone.0078092.CrossRefGoogle Scholar
  85. Sahle, Y., Morgan, L. E., Braun, D. R., Atnafu, B., & Hutchings, W. K. (2014). Chronological and behavioral contexts of the earliest Middle Stone Age in the Gademotta Formation, Main Ethiopian Rift. Quaternary International, 331, 6–19.CrossRefGoogle Scholar
  86. Sánchez Yustos, P., Díez-Martín, F., Domínguez-Rodrigo, M., & Tarriño-Vinagre, A. (2012). Discriminación experimental de los rasgos técnicos en la talla bipolar y a mano alzada en lascas a través de los cuarzos de Naibor Soit (Garganta de Olduvai, Tanzania). Munibe, 63, 5–26.Google Scholar
  87. Schick, K. D. (1986). Stone Age sites in the making. Experiments in the formation and transformations of archaeological occurrences. B.A.R. International Series, 319. Oxford: Archaeopress.Google Scholar
  88. Schick, K. D. (1987). Experimentally-derived criteria for assessing hydrologic disturbance of archaeological sites. In D. T. Nash, & M. D. Petraglia (Eds.), Natural formation processes and the archaeological record (pp. 86–107). B.A.R. International Series, 352. Oxford: Archaeopress.Google Scholar
  89. Schlebusch, C. M., Malmström, H., Günther, T., Sjödin, P., Coutinho, A., et al. (2017). Southern African ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago. Science, 358(6363), 652–655.  https://doi.org/10.1126/science.aao6266.CrossRefGoogle Scholar
  90. Schmalz, R. F. (1960). Flint and the patination of flint artifacts. Proceedings of the Prehistoric Society, 26, 44–49.CrossRefGoogle Scholar
  91. Sellet, F. (1993). Chaine operatoire: The concept and its applications. Lithic Technology, 18(1–2), 106–112.CrossRefGoogle Scholar
  92. Shackley, M. L. (1978). The behavior of artefacts as sedimentary particles. Archaeometry, 20(1), 55–61.CrossRefGoogle Scholar
  93. Sharon, G., & Beaumont, P. (2006). Victoria West: A highly standardized prepared core technology. In N. Goren-Inbar & G. Sharon (Eds.), Axe Age: Acheulian tool making from quarry to discard (pp. 181–199). London: Equinox.Google Scholar
  94. Shipton, C., Roberts, P., Archer, W., Armitage, S. J., Bita, C., et al. (2018). 78,000-year-old record of Middle and Later Stone Age innovation in an East African tropical forest. Nature Communications, 9(1832).  https://doi.org/10.1038/s41467-018-04057-3.
  95. Shott, M. J. (1994). Size and form in the analysis of flake debris: Review and recent approaches. Journal of Archaeological Method and Theory, 1(1), 69–110.CrossRefGoogle Scholar
  96. Stapert, D. (1976). Some natural surface modifications on flint in the Netherlands. Palaeohistoria, 18, 7–41.Google Scholar
  97. Terradas, X. (2003). Discoid flaking method: Conception and technological variability. In M. Peresani (Ed.), Discoid lithic technology. Advances and implications, (pp. 19–20). B.A.R. International Series 1120. Oxford, Archaeopress.Google Scholar
  98. Texier, P. J. (1981). Désilification des silex taillés. Quaternaria, 23, 159–169.Google Scholar
  99. Thompson, J. C. (2005). The impact of post-depositional processes on bone surface modification frequencies: A corrective strategy and its application to the Loiyangalani site, Serengeti Plain, Tanzania. Journal of Taphonomy, 3(2), 57–80.Google Scholar
  100. Tringham, R., Cooper, G., Odell, G., Voytex, B., & Whitman, A. (1974). Experimentation in the formation of edge damage: A new approach to lithic analysis. Journal of Field Archaeology, 1, 171–196.Google Scholar
  101. Tryon, C. A., & Potts, R. (2011). Approaches for understanding flake production in the African Acheulean. PaleoAnthropology, 2011, 376–389.Google Scholar
  102. Tryon, C. A., McBrearty, S., & Texier, P.-J. (2005). Levallois lithic technology from the Kapthurin Formation, Kenya: Acheulian origin and Middle Stone Age diversity. African Archaeological Review, 22(4), 199–229.CrossRefGoogle Scholar
  103. Tryon, C. A., Crevecoeur, I., Faith, J. T., Ekshtain, R., Nivens, J., et al. (2015). Late Pleistocene age and archaeological context for the hominin calvaria from GvJm-22 (Lukenya Hill, Kenya). PNAS, 112(9), 2682–2687.CrossRefGoogle Scholar
  104. Tryon, C. A., Lewis, J. E., Ranhorn, K. L., Kwekason, A., Alex, B., et al. (2018). Middle and Later Stone Age chronology of Kisese II rockshelter (UNESCO World Heritage Kondoa Rock-Art Sites), Tanzania. PLoS One, 13(2).  https://doi.org/10.1371/journal.pone.0192029.
  105. Van Peer, P. (1992). The Levallois reduction strategy. Monographs in world archaeology, 13. Wisconsin: Prehistory Press.Google Scholar
  106. Villa, P. (2009). The Lower to Middle Paleolithic transition. In M. Camps & P. R. Chauhan (Eds.), Sourcebook of Paleolithic transitions (pp. 265–270). New York: Springer.CrossRefGoogle Scholar
  107. Villa, P., & Courtin, J. (1983). The interpretation of stratified sites: A view from underground. Journal of Archaeological Science, 10, 267–281.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Prehistory and ArchaeologyUNEDMadridSpain
  2. 2.IDEAInstitute of Evolution in AfricaMadridSpain
  3. 3.National Museum of TanzaniaDar es SalaamTanzania
  4. 4.School of Geography, Archaeology and Environmental StudiesUniversity of the WitwatersrandJohannesburgSouth Africa
  5. 5.Centre of Excellence in PalaeosciencesUniversity of the WitwatersrandJohannesburgSouth Africa
  6. 6.DavisUSA

Personalised recommendations