Optimal dynamic basis trading

  • Bahman Angoshtari
  • Tim LeungEmail author
Research Article


We study the problem of dynamically trading a futures contract and its underlying asset under a stochastic basis model. The basis evolution is modeled by a stopped scaled Brownian bridge to account for non-convergence of the basis at maturity. The optimal trading strategies are determined from a utility maximization problem under hyperbolic absolute risk aversion risk preferences. By analyzing the associated Hamilton–Jacobi–Bellman equation, we derive the exact conditions under which the equation admits a solution and solve the utility maximization explicitly. A series of numerical examples are provided to illustrate the optimal strategies and examine the effects of model parameters.


Futures Stochastic basis Cash and carry Scaled Brownian bridge Risk aversion 

JEL Classification

C41 G11 G12 



  1. Adjemian, M .K., Garcia, P., Irwin, S., Smith, A.: Non-convergence in domestic commodity futures markets: causes, consequences, and remedies. US Dep Agric Econ Res Serv 115, 155381 (2013)Google Scholar
  2. Brennan, M.J., Schwartz, E.S.: Optimal arbitrage strategies under basis variability. In: Sarnat, M. (ed.) Essays in Financial Economics. North Holland, Amsterdam (1988)Google Scholar
  3. Brennan, M.J., Schwartz, E.S.: Arbitrage in stock index futures. J Bus 63(1), S7–S31 (1990)Google Scholar
  4. Brody, D.C., Hughston, L.P., Macrina, A.: Information-based asset pricing. Int J Theor Appl Financ 11(01), 107–142 (2008)Google Scholar
  5. Bulthuis, B., Concha, J., Leung, T., Ward, B.: Optimal execution of limit and market orders with trade director, speed limiter, and fill uncertainty. Int J Financ Eng 4(2–3), 1750020 (2017)Google Scholar
  6. Cartea, Á., Gan, L., Jaimungal, S.: Trading cointegrated assets with price impact. Math Financ, Forthcoming (2018). arXiv:1807.01428 [q-fin.TR]
  7. Cartea, Á., Jaimungal, S.: Algorithmic trading of co-integrated assets. Int J Theor Appl Financ 19(06), 1650038 (2016)Google Scholar
  8. Cartea, Á., Jaimungal, S., Kinzebulatov, D.: Algorithmic trading with learning. Int J Theor Appl Financ 19(4), 1650028 (2016)Google Scholar
  9. Chan, K.: A further analysis of the lead-lag relationship between the cash market and stock index futures market. Rev Financ Stud 5(1), 123–152 (1992)Google Scholar
  10. Cheridito, P., Filipović, D., Yor, M.: Equivalent and absolutely continuous measure changes for jump-diffusion processes. Ann Appl Probab 15(3), 1713–1732 (2005)Google Scholar
  11. Chiu, M., Wong, H.: Mean-variance portfolio selection of cointegrated assets. J Econ Dyn Control 35, 1369–1385 (2011)Google Scholar
  12. Cox, J.C., Ingersoll, J.F., Ross, S.A.: The relation between forward and futures price. J Financ Econ 9(December), 321–346 (1981)Google Scholar
  13. Dai, M., Zhong, Y., Kwok, Y.K.: Optimal arbitrage strategies on stock index futures under position limits. J Futures Mark 31(4), 394–406 (2011)Google Scholar
  14. Fleming, W .H., Soner, H .M.: Controlled Markov Processes and Viscosity Solutions. Springer, New York (2006)Google Scholar
  15. Garcia, P., Irwin, S.H., Smith, A.: Futures market failure? Am J Agric Econ 97(1), 40–64 (2015)Google Scholar
  16. Irwin, S.H., Garcia, P., Good, D.L., Kunda, E.L.: Spreads and non-convergence in chicago board of trade corn, soybean, and wheat futures: are index funds to blame? Appl Econ Perspect Policy 33(1), 116–142 (2011)Google Scholar
  17. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Springer, Berlin (1991)Google Scholar
  18. Karatzas, I., Shreve, S.: Methods of Mathematical Finance, vol. 39. Springer, Berlin (1998)Google Scholar
  19. Kawaller, I.G., Koch, P.D., Koch, T.W.: The temporal price relationship between S&P 500 futures and the S&P 500 index. J Financ 42(5), 1309–1329 (1987)Google Scholar
  20. Kim, S., Omberg, E.: Dynamic nonmyopic portfolio behavior. Rev Financ Stud 9(1), 141–161 (1996)Google Scholar
  21. Kitapbayev, Y., Leung, T.: Optimal mean-reverting spread trading: nonlinear integral equation approach. Ann Financ 13(2), 181–203 (2018)Google Scholar
  22. Korn, R., Kraft, H.: On the stability of continuous-time portfolio problems with stochastic opportunity set. Math Financ 14(3), 403–414 (2004)Google Scholar
  23. Lee, S., Papanicolaou, A.: Pairs trading of two assets with uncertainty in co-integration’s level of mean reversion. Int J Theor Appl Financ 19(08), 1650054 (2016)Google Scholar
  24. Leung, T., Li, J., Li, X.: Optimal timing to trade along a randomized Brownian bridge. Int J Financ Stud 6(3), 75 (2018)Google Scholar
  25. Leung, T., Li, X.: Optimal Mean Reversion Trading: Mathematical Analysis And Practical Applications. World Scientific, Singapore (2016)Google Scholar
  26. Leung, T., Ward, B.: The golden target: analyzing the tracking performance of leveraged gold ETFs. Stud Econ Financ 32(3), 278–297 (2015)Google Scholar
  27. Leung, T., Yan, R.: Optimal dynamic pairs trading of futures under a two-factor mean-reverting model. Int J Financ Eng 5(3), 1850027 (2018)Google Scholar
  28. Leung, T., Yan, R.: A stochastic control approach to managed futures portfolios. Int J Financ Eng 6(1), 1950005 (2019)Google Scholar
  29. Liu, J., Longstaff, F.A.: Losing money on arbitrage: optimal dynamic portfolio choice in markets with arbitrage opportunities. Rev Financ Stud 17(3), 611–641 (2004)Google Scholar
  30. Liu, J., Timmermann, A.: Optimal convergence trade strategies. Rev Financ Stud 26(4), 1048–1086 (2013)Google Scholar
  31. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev Econ Stat 51(3), 247–257 (1969)Google Scholar
  32. Modest, D.M., Sundaresan, M.: The relationship between spot and futures prices in stock index futures markets: some preliminary evidence. J Futures Mark 3(1), 15–41 (1983)Google Scholar
  33. Mudchanatongsuk, S., Primbs, J., Wong, W.: Optimal pairs trading: a stochastic control approach. In Proceedings of the American Control Conference, Seattle, Washington, pp. 1035–1039 (2008)Google Scholar
  34. Stoll, H.R., Whaley, R.E.: The dynamics of stock index and stock index futures returns. J Financ Quant Anal 25(4), 441–468 (1990)Google Scholar
  35. Tourin, A., Yan, R.: Dynamic pairs trading using the stochastic control approach. J Econ Dyn Control 37(10), 1972–1981 (2013)Google Scholar
  36. Zariphopoulou, T.: A solution approach to valuation with unhedgeable risks. Financ Stoch 5(1), 61–82 (2001)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Applied Mathematics DepartmentUniversity of WashingtonSeattleUSA

Personalised recommendations