Change point dynamics for financial data: an indexed Markov chain approach

  • Guglielmo D’AmicoEmail author
  • Ada Lika
  • Filippo Petroni
Research Article


This paper uses an Indexed Markov Chain to model high frequency price returns of quoted rms. Introducing an Index process permits consideration of endogenous market volatility, and two important stylized facts of financial time series can be taken into account: long memory and volatility clustering. This paper rst proposes a method to optimally determine the state space of the Index process, which is based on a change-point approach for Markov chains. Furthermore, we provide an explicit formula for the probability distribution function of the rst change of state of the Index process. Results are illustrated with an application to intra-day firm prices.


Change point Financial returns Volatility Intra-day prices 

JEL Classification

C02 G30 


  1. Agosto, A., Moretto, E.: Variance matters (in stochastic dividend discount models). Ann Finance 11, 283–295 (2015)CrossRefGoogle Scholar
  2. Augustyniak, M.: Maximum likelihood estimation of the Markov-switching Garch model. Comput Stat Data Anal 76, 61–75 (2014)CrossRefGoogle Scholar
  3. Barbu, V.S., D’Amico, G., De Blasis, R.: Novel advancements in the Markov chain stock model: analysis and inference. Ann Finance 13, 125–152 (2017)CrossRefGoogle Scholar
  4. Billingsley, P.: Statistical inference in Markov chain. In: The Stanford Meetings of the Institute of Mathematical Statistics (1960)Google Scholar
  5. Brémaud, P.: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. New York: Springer (1999)CrossRefGoogle Scholar
  6. Brooks, C., Hinich, M.J.: Detecting intraday periodicities with application to high frequency exchange rates. J R Stat Soc Ser C Appl Stat 55(2), 241–259 (2006)CrossRefGoogle Scholar
  7. Bulla, J., Bulla, I.: Stylized facts of financial time series and hidden semi-Markov models. Comput Stat Data Anal 51, 2192–2209 (2006)CrossRefGoogle Scholar
  8. D’Amico, G.: Age-usage semi-Markov models. Appl Math Model 35, 4354–4366 (2011)CrossRefGoogle Scholar
  9. D’Amico, G.: A semi-Markov approach to the stock valuation problem. Ann Finance 9, 589–610 (2013)CrossRefGoogle Scholar
  10. D’Amico, G., Petroni, F.: A semi-Markov model with memory for price changes. J Stat Mech 2011(12), 12009 (2011)CrossRefGoogle Scholar
  11. D’Amico, G., Petroni, F.: A semi-Markov model for price returns. Physica A 391(20), 4867–4876 (2012a)CrossRefGoogle Scholar
  12. D’Amico, G., Petroni, F.: Weighted-indexed semi-Markov models for modeling financial returns. J Stat Mech 2012(07), 07015 (2012)CrossRefGoogle Scholar
  13. D’Amico, G., Petroni, F.: Multivariate high-frequency financial data via semi-Markov processes. Markov Process Relat Fields 20, 415–434 (2014)Google Scholar
  14. D’Amico, G., Petroni, F.: Copula based multivariate semi-Markov models with applications in high-frequency finance. Eur J Oper Res 267(2), 765–777 (2018)CrossRefGoogle Scholar
  15. Diebold, F.X., Inoue, A.: Long memory and regime switching. J Econom 105, 131–159 (2001)CrossRefGoogle Scholar
  16. Fard, F.A., Siu, T.K.: Pricing and managing risks of European-style options in a Markovian regime-switching binomial model. Ann Finance 9(3), 421–438 (2013)CrossRefGoogle Scholar
  17. Holzmann, H., Schwaiger, F.: Testing for the number of states in hidden Markov models. Comput Stat Data Anal 100, 318–330 (2016)CrossRefGoogle Scholar
  18. Janssen, J., Manca, R.: Applied Semi-Markov Processes. New York: Springer (2006)Google Scholar
  19. Jin-Guo, X., Dong, H., Jian-Qi, Y.: Online change detection of Markov chains with unknown post-change transition probabilities. Commun Stat Theory Methods 45(3), 597–611 (2016)CrossRefGoogle Scholar
  20. Kijima, M.: Stochastic Processes with Applications to Finance. Boca Raton: CRC Press (2013)Google Scholar
  21. Lawrance, A.J.: Exploratory graphics for financial time series volatility. J R Stat Soc Ser C Appl Stat 62(5), 669–686 (2013)Google Scholar
  22. Limnios, N., Oprişan, G.: Semi-Markov Processes and Reliability. Boston: Birkhäuser (2001)CrossRefGoogle Scholar
  23. Polansky, A.M.: Detecting change-points in Markov chains. Comput Stat Data Anal 51(12), 6013–6026 (2007)CrossRefGoogle Scholar
  24. Shiyun, W., Guan, L.K., Chang, C.: A new methodology for studying intraday dynamics of Nikkei index futures using Markov chains. J Int Financ Markets Inst Money 9, 247–265 (1999)CrossRefGoogle Scholar
  25. Wang, T., Zhuang, J., Obara, K., Tsuruoka, H.: Hidden Markov modelling of sparse time series from non-volcanic tremor observations. J R Stat Soc Ser C Appl Stat 66(4), 691–715 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guglielmo D’Amico
    • 1
    Email author
  • Ada Lika
    • 2
  • Filippo Petroni
    • 2
  1. 1.Dipartimento di FarmaciaUniversità “G. D’Annunzio” di Chieti-PescaraChietiItaly
  2. 2.Dipartimento di Scienze Economiche ed AziendaliUniversità degli studi di CagliariCagliariItaly

Personalised recommendations