Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Crack nucleation and propagation simulation in brittle two-phase perforated/particulate composites by a phase field model

  • 21 Accesses

Abstract

Fracture is a very common failure mode of the composite materials, which seriously affects the reliability and service-life of composite materials. Therefore, the study of the fracture behavior of the composite materials is of great significance and necessity, which demands an accurate and efficient numerical tool in general cases because of the complexity of the arising boundary-value or initial-boundary value problems. In this paper, a phase field model is adopted and applied for the numerical simulation of the crack nucleation and propagation in brittle linear elastic two-phase perforated/particulate composites under a quasi-static tensile loading. The phase field model can well describe the initiation, propagation and coalescence of the cracks without assuming the existence and the geometry of the initial cracks in advance. Its numerical implementation is realized within the framework of the finite element method (FEM). The accuracy and the efficiency of the present phase field model are verified by the available reference results in literature. In the numerical examples, we first study and discuss the influences of the hole/particle size on the crack propagation trajectory and the force–displacement curve. Then, the effects of the hole/particle shape on the crack initiation and propagation are investigated. Furthermore, numerical examples are presented and discussed to show the influences of the hole/particle location on the crack initiation and propagation characteristics. It will be demonstrated that the present phase field model is an efficient tool for the numerical simulation of the crack initiation and propagation problems in brittle two-phase composite materials, and the corresponding results may play an important role in predicting and preventing possible hazardous crack initiation and propagation in engineering applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

References

  1. 1.

    Erdogan, F., Gupta, G.D.: The inclusion problem with a crack crossing the boundary. Int. J. Fract. 11, 13–27 (1975)

  2. 2.

    Wang, C., Libardi, W., Baldo, J.B.: Analysis of crack extension paths and toughening in a two phase brittle particulate composite by the boundary element method. Int. J. Fract. 94, 177–188 (1998)

  3. 3.

    Ponnusami, S.A., Turteltaub, S., van der Zwaag, S.: Cohesive-zone modelling of crack nucleation and propagation in particulate composites. Eng. Fract. Mech. 149, 170–190 (2015)

  4. 4.

    Zhang, P., Hu, X., Yang, S., et al.: Modelling progressive failure in multi-phase materials using a phase field method. Eng. Fract. Mech. 209, 105–124 (2019)

  5. 5.

    Demir, I., Zbib, H.M., Khaleel, M.: Microscopic analysis of crack propagation for multiple cracks, inclusions and voids. Theor. Appl. Fract. Mech. 36, 147–164 (2001)

  6. 6.

    Griffith, A.A.: VI. The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A 221, 163–198 (1921)

  7. 7.

    Irwin, G.R.: Fracture. In: Handbuch der Physik, Band VI, Elastizität und Plastizität. Springer-Verlag, Berlin 6, 551–590 (1958)

  8. 8.

    Erdogan, F., Sih, G.C.: On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 85, 519–525 (1963)

  9. 9.

    Sih, G.C.: Mechanics of Fracture-Methods of Analysis and Solutions of Crack Problems. NoordHoff International Publishers, Leyden (1973)

  10. 10.

    Palaniswamy, K., Knauss, W.G.: Propagation of a crack under general, in-plane tension. Int. J. Fract. Mech. 8, 114–117 (1972)

  11. 11.

    Steif, P.S.: A semi-infinite crack partially penetrating a circular inclusion. J. Appl. Mech. 54, 87–92 (1987)

  12. 12.

    Shahani, A.R., Fasakhodi, M.R.A.: Finite element analysis of dynamic crack propagation using remeshing technique. Mater. Des. 30, 1032–1041 (2009)

  13. 13.

    Peng, G.L., Wang, Y.H.: A node split method for crack growth problem. Appl. Mech. Mater. 182–183, 1524–1528 (2012)

  14. 14.

    Lei, J., Wang, Y.S., Huang, Y., et al.: Dynamic crack propagation in matrix involving inclusions by a time-domain BEM. Eng. Anal. Bound. Elem. 36, 651–657 (2012)

  15. 15.

    Sukumar, N., Chopp, D.L., Moës, N., et al.: Modeling holes and inclusions by level sets in the extended finite-element method. Comput. Methods Appl. Mech. Eng. 190, 6183–6200 (2001)

  16. 16.

    Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)

  17. 17.

    Buliga, M.: Energy minimizing brittle crack propagation. J. Elast. 52, 201–238 (1999)

  18. 18.

    Bourdin, B., Francfort, G.A., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48, 797–826 (2000)

  19. 19.

    Amor, H., Marigo, J.J., Maurini, C.: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids 57, 1209–1229 (2009)

  20. 20.

    Bourdin, B., Francfort, G.A., Marigo, J.J.: The variational approach to fracture. J. Elast. 91, 5–148 (2008)

  21. 21.

    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math 42, 577–685 (1989)

  22. 22.

    Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199, 2765–2778 (2010)

  23. 23.

    Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83, 1273–1311 (2010)

  24. 24.

    Nguyen, T.T., Yvonnet, J., Zhu, Q.Z., et al.: A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Eng. Fract. Mech. 139, 18–39 (2015)

  25. 25.

    Nguyen, T.T., Yvonnet, J., Bornert, M., et al.: On the choice of parameters in the phase field method for simulating crack initiation with experimental validation. Int. J. Fract. 197, 213–226 (2016)

  26. 26.

    Molnár, G., Gravouil, A.: 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture. Finite Elem. Anal. Des. 130, 27–38 (2017)

  27. 27.

    Wu, J.Y.: A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J. Mech. Phys. Solids 103, 72–99 (2017)

  28. 28.

    Zhou, S., Rabczuk, T., Zhuang, X.: Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Adv. Eng. Softw. 122, 31–49 (2018)

  29. 29.

    Lu, X., Li, C., Tie, Y., et al.: Crack propagation simulation in brittle elastic materials by a phase field method. Theor. Appl. Mech. Lett. 9, 339–352 (2019)

  30. 30.

    Hofacker, M., Miehe, C.: Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Int. J. Fract. 178, 113–129 (2012)

  31. 31.

    Borden, M.J., Verhoosel, C.V., Scott, M.A., et al.: A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217–220, 77–95 (2012)

  32. 32.

    Nguyen, V.P., Wu, J.Y.: Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model. Comput. Methods Appl. Mech. Eng. 340, 1000–1022 (2018)

  33. 33.

    Hesch, C., Weinberg, K.: Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture. Int. J. Numer. Methods Eng. 99, 906–924 (2014)

  34. 34.

    Miehe, C., Schänzel, L.M., Ulmer, H.: Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput. Methods Appl. Mech. Eng. 294, 449–485 (2015)

  35. 35.

    Zhou, S., Zhuang, X., Rabczuk, T.: Phase-field modeling of fluid-driven dynamic cracking in porous media. Comput. Methods Appl. Mech. Eng. 350, 169–198 (2019)

  36. 36.

    Heister, T., Wheeler, M.F., Wick, T.: A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput. Methods Appl. Mech. Eng. 290, 466–495 (2015)

  37. 37.

    Miehe, C., Aldakheel, F., Raina, A.: Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory. Int. J. Plast. 84, 1–32 (2016)

  38. 38.

    Xia, L., Yvonnet, J., Ghabezloo, S.: Phase field modeling of hydraulic fracturing with interfacial damage in highly heterogeneous fluid-saturated porous media. Eng. Fract. Mech. 186, 158–180 (2017)

  39. 39.

    Wu, J.Y., Nguyen, V.P.: A length scale insensitive phase-field damage model for brittle fracture. J. Mech. Phys. Solids 119, 20–42 (2018)

  40. 40.

    Teichtmeister, S., Kienle, D., Aldakheel, F., et al.: Phase field modeling of fracture in anisotropic brittle solids. Int. J. Nonlin. Mech. 97, 1–21 (2017)

  41. 41.

    Nguyen, T.T., Réthoré, J., Baietto, M.C.: Phase field modelling of anisotropic crack propagation. Eur. J. Mech. A-Solid 65, 279–288 (2017)

  42. 42.

    Emdadi, A., Fahrenholtz, W.G., Hilmas, G.E., et al.: A modified phase-field model for quantitative simulation of crack propagation in single-phase and multi-phase materials. Eng. Fract. Mech. 200, 339–354 (2018)

  43. 43.

    Yang, Z.J., Li, B.B., Wu, J.Y.: X-ray computed tomography images based phase-field modeling of mesoscopic failure in concrete. Eng. Fract. Mech. 208, 151–170 (2019)

  44. 44.

    Yin, B.B., Zhang, L.W.: Phase field method for simulating the brittle fracture of fiber reinforced composites. Eng. Fract. Mech. 211, 321–340 (2019)

  45. 45.

    Pham, K., Amor, H., Marigo, J.J., et al.: Gradient damage models and their use to approximate brittle fracture. Int. J. Damage Mech. 20, 618–652 (2011)

  46. 46.

    Miehe, C., Lambrecht, M.: Algorithms for computation of stresses and elasticity moduli in terms of Seth–Hill’s family of generalized strain tensors. Commun. Numer. Methods Eng. 17, 337–353 (2001)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants U1333201 and U1833116). The first author is also grateful to the financial support by China Scholarship Council (CSC) for the joint Ph.D. scholarship at the Chair of Structural Mechanics, Department of Civil Engineering, University of Siegen, Germany.

Author information

Correspondence to Cheng Li or Chuanzeng Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Hou, Y., Tie, Y. et al. Crack nucleation and propagation simulation in brittle two-phase perforated/particulate composites by a phase field model. Acta Mech. Sin. (2020). https://doi.org/10.1007/s10409-020-00927-6

Download citation

Keywords

  • Brittle fracture
  • Phase field model
  • Perforated/particulate composites
  • Crack nucleation and propagation
  • Finite element method