Advertisement

Impact of carbon paper structural parameters on the performance of a polymer electrolyte fuel cell cathode via lattice Boltzmann method

  • M. Nazemian
  • G. R. MolaeimaneshEmail author
Research Paper
  • 16 Downloads

Abstract

Polymer electrolyte fuel cells (PEFCs) being employed in fuel cell electric vehicles (FCEVs) are promising power generators producing electric power from fuel stream via porous electrodes. Structure of carbon paper gas diffusion layers (GDLs) applying in the porous electrodes can greatly affect the PEFC performance, especially at the cathode side where electrochemical reaction is more sluggish. To discover the role of carbon paper GDL structure on the mass transfer properties, different cathode electrodes with dissimilar structural parameters are simulated via lattice Boltzmann method (LBM). 3D contours of oxygen and water vapor concentration through the GDL as well as the 2D contours of current density on the catalyst layer are illustrated and examined. The results indicate that the carbon fiber diameter has a negligible impact on the current density while the impact of carbon paper thickness and porosity is significant. In fact, increasing of carbon paper thickness or porosity leads to lack of cell performance.

Keywords

Polymer electrolyte fuel cell (PEFC) Lattice Boltzmann method (LBM) Microstructure reconstruction Carbon paper Mass transfer properties 

List of symbols

Variables

\(a\)

Roughness factor

\(\varvec{c}\)

Velocity of particle in the lattice Boltzmann method (LBM) (lu·ts−1, lu and ts denote the units of length and time in LBM, respectively)

\(c_{s}\)

Speed of sound in the LBM (lu·ts−1)

\(d\)

Carbon fiber diameter (μm)

\(F\)

Faraday constant (A·s·mol−1)

\(f\)

Density distribution function in the LBM

\(j\)

Current density (A·cm−2)

\(p\)

Directional density function (Eq. (1))

\(R_{u}\)

Universal gas constant (J·mol−1·K−1)

\(\varvec{r}\)

Space position

\(T\)

Temperature (K)

\(t\)

Time (ts); also gas diffusion layer (GDL) thickness (μm)

\(\varvec{u}\)

Fluid velocity vector

\(w\)

Weighting factor in LBM

Greek symbols

\(\beta\)

Anisotropy parameter

\(\eta\)

Activation over-voltage

\(\varepsilon\)

GDL porosity

\(\lambda\)

Altitude

\(\rho\)

Density of chemical species in LBM (lm·lu−3)

\(\sigma\)

GDL electrical conductivity (Ω−1·cm−1)

\(\tau\)

Relaxation time (ts)

\(\varphi\)

Longitude

Subscripts and superscripts

eq

Equilbrium

i

ith direction in LBM

ref

Reference

References

  1. 1.
    Xu, A., Shyy, W., Zhao, T.: Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries. Acta Mech. Sin. 33, 555–574 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Song, G.H., Meng, H.: Numerical modeling and simulation of PEM fuel cells: progress and perspective. Acta Mech. Sin. 29, 318–334 (2013)CrossRefGoogle Scholar
  3. 3.
    Khazaee, I., Sabadbafan, H.: Numerical study of changing the geometry of the flow field of a PEM fuel cell. Heat Mass Transf. 52, 993–1003 (2016)CrossRefGoogle Scholar
  4. 4.
    Ehsani, M., Gao, Y., Emadi, A.: Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design. CRC Press, Boca Raton (2004)CrossRefGoogle Scholar
  5. 5.
    Zhang, X., Ni, M., He, W., et al.: Theoretical analysis and optimum integration strategy of the PEM fuel cell and internal combustion engine hybrid system for vehicle applications. Int. J. Energy Res. 39, 1664–1672 (2015)Google Scholar
  6. 6.
    Molaeimanesh, G.R., Bamdezh, M.A., Nazemian, M.: Impact of catalyst layer morphology on the performance of PEM fuel cell cathode via lattice Boltzmann simulation. Int. J. Hydrogen Energy 43, 20959–20975 (2018)CrossRefGoogle Scholar
  7. 7.
    Peng, R.G., Chung, C.C., Chen, C.H.: Experimental and numerical studies of micro PEM fuel cell. Acta Mech. Sin. 27, 627–635 (2011)CrossRefGoogle Scholar
  8. 8.
    Shojaeefard, M.H., Molaeimanesh, G.R., Nazemian, M., et al.: A review on microstructure reconstruction of PEM fuel cells porous electrodes for pore scale simulation. Int. J. Hydrogen Energy 41, 20276–20293 (2016)CrossRefGoogle Scholar
  9. 9.
    Ostadi, H., Rama, P., Liu, Y., et al.: Nanotomography based study of gas diffusion layers. Microelectron. Eng. 87, 1640–1642 (2010)CrossRefGoogle Scholar
  10. 10.
    Molaeimanesh, G.R., Saeidi Googarchin, H., Qasemian Moqaddam, A.: Lattice Boltzmann simulation of proton exchange membrane fuel cells—a review on opportunities and challenges. Int. J. Hydrogen Energy 41, 22221–22245 (2016)CrossRefGoogle Scholar
  11. 11.
    Molaeimanesh, G.R., Nazemian, M.: Investigation of GDL compression effects on the performance of a PEM fuel cell cathode by lattice Boltzmann method. J. Power Sour. 359, 494–506 (2017)CrossRefGoogle Scholar
  12. 12.
    Rama, P., Liu, Y., Chen, R., et al.: Multi-scale simulation of single-phase multi-component transport in the cathode gas diffusion layer of a polymer electrolyte fuel celltalized. ECS Trans. 28–27, 103–111 (2010)CrossRefGoogle Scholar
  13. 13.
    Chen, L., Lua, H.B., He, Y.L., et al.: Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields. Int. J. Therm. Sci. 51, 132–144 (2012)CrossRefGoogle Scholar
  14. 14.
    Chen, L., Luan, H., Feng, Y., et al.: Coupling between finite volume method and lattice Boltzmann method and its application to fluid flow and mass transport in proton exchange membrane fuel cell. Int. J. Heat Mass Transf. 55, 3834–3848 (2012)CrossRefGoogle Scholar
  15. 15.
    Chen, L., Feng, Y.L., Song, C.X., et al.: Multiscale modeling of proton exchange membrane fuel cell by coupling finite volume method and lattice Boltzmann method. Int. J. Heat Mass Transf. 63, 268–283 (2013)CrossRefGoogle Scholar
  16. 16.
    Molaeimanesh, G.R., Akbari, M.H.: A three-dimensional porescale model of the cathode electrode in polymer-electrolyte membrane fuel cell by lattice Boltzmann method. J. Power Sour. 258, 89–97 (2014)CrossRefGoogle Scholar
  17. 17.
    Molaeimanesh, G.R., Akbari, M.H.: A pore-scale model for the cathode electrode of a proton exchange membrane fuel cell by lattice Boltzmann method. Korean J. Chem. Eng. 32, 397–405 (2015)CrossRefGoogle Scholar
  18. 18.
    Molaeimanesh, G.R., Akbari, M.H.: Agglomerate modeling of cathode catalyst layer of a PEM fuel cell by the lattice Boltzmann method. Int. J. Hydrogen Energy 40, 5169–5185 (2015)CrossRefGoogle Scholar
  19. 19.
    Ashorynejad, H.R., Javaherdeh, K.: Investigation of a waveform cathode channel on the performance of a PEM fuel cell by means of a pore-scale multi-component lattice Boltzmann method. J. Taiwan Inst. Chem. Eng. 66, 126–136 (2016)CrossRefGoogle Scholar
  20. 20.
    Ashorynejad, H.R., Javaherdeh, K., Van Den Akker, H.E.A.: The effect of pulsating pressure on the performance of a PEM fuel cell with a wavy cathode surface. Int. J. Hydrogen Energy 41, 14239–14251 (2016)CrossRefGoogle Scholar
  21. 21.
    Wang, J., Yuan, J., Sundén, B.: Modeling of inhomogeneous compression effects of porous GDL on transport phenomena and performance in PEM fuel cells. Int. J. Energy Res. 41, 958–1003 (2016)Google Scholar
  22. 22.
    Wang, J., Yuan, J., Yu, J.S., et al.: Investigation of effects of non-homogenous deformation of gas diffusion layer in a PEM fuel cell. Int. J. Energy Res. 41, 2121–2137 (2017)CrossRefGoogle Scholar
  23. 23.
    Yuan, J., Xiao, Y.: Modeling development on the meso-scale reacting transport phenomena in proton exchange membrane fuel cells. Acta Mech. Sin. 29, 370–378 (2013)CrossRefGoogle Scholar
  24. 24.
    Schulz, V.P., Becker, J., Wiegmann, A., et al.: Modeling of two-phase behavior in the gas diffusion medium of PEFCs via full morphology approach. J. Electrochem. Soc. 154, B419–B426 (2007)CrossRefGoogle Scholar
  25. 25.
    Schladitz, K., Peters, S., Reinel-Bitzer, D., et al.: Design of acoustic trim based on geometric modeling and flow simulation for non-woven. Comput. Mater. Sci. 38, 56–66 (2006)CrossRefGoogle Scholar
  26. 26.
    Stoyan, D., Mecke, J., Pohlmann, S.: Formulas for stationary planar fibre processes II-partially oriented-fibre systems. Stat. J. Theor. Appl. Stat. 11, 281–286 (1980)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sukop, M.C., Thorne, D.T.: Lattice Boltzmann modeling: an introduction for geoscientists and engineers, 1st edn. Springer, Heidelberg (2007)Google Scholar
  29. 29.
    Zou, Q., He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9, 1591–1598 (1997)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Shah, A.A., Luo, K.H., Ralph, T.R., et al.: Recent trends and developments in polymer electrolyte membrane fuel cell modelling. Electrochim. Acta 56, 3731–3757 (2011)CrossRefGoogle Scholar
  31. 31.
    Chen, L., Wu, G., Holby, E.F., et al.: Lattice Boltzmann pore-scale investigation of coupled physicalelectrochemical processes in C/Pt and non-precious metal cathode catalyst layers in proton exchange membrane fuel cells. Electrochim. Acta 158, 175–186 (2015)CrossRefGoogle Scholar
  32. 32.
    Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)CrossRefGoogle Scholar
  33. 33.
    Mench, M.M.: Fuel cell engines, 1st edn. Wiley, New Jersey (2008)CrossRefGoogle Scholar
  34. 34.
    Incropera, F.P., DeWitt, D.P., Bergman, T.L.: Recent trends and developments in polymer electrolyte membrane fuel cell modelling. In: Fundamentals of heat and mass transfer, 6th edn, Wiley, New Jersey (2007)Google Scholar
  35. 35.
    Li, X.: Principles of fuel cells, 1st edn. Taylor and Francis Group, New York (2006)Google Scholar
  36. 36.
    Parthasarathy, A., Srinivasan, S.: Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion® interface—a microelectrode investigation. J. Electrochem. Soc. 139, 2530–2537 (1992)CrossRefGoogle Scholar
  37. 37.
    Berning, T., Lu, D.M., Djilali, N.: Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. J. Power Sour. 106, 284–294 (2002)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Laboratory of Automotive Fluids and Structures Analysis, Automotive Engineering SchoolIran University of Science and TechnologyTehranIran

Personalised recommendations