Advertisement

Acta Mechanica Sinica

, Volume 35, Issue 6, pp 1150–1154 | Cite as

A note on the Galilean invariance of aerodynamic force theories in unsteady incompressible flows

  • An-Kang Gao
  • Jiezhi WuEmail author
Research Paper
  • 74 Downloads

Abstract

As a basic principle in classical mechanics, the Galilean invariance states that the force is the same in all inertial frames of reference. But this principle has not been properly addressed by most unsteady aerodynamic force theories, if the partial force contributed by a local flow structure is to be evaluated. In this note, we discuss the Galilean-invariance conditions of the partial force for several typical theories and numerically test what would happen if these conditions do not hold.

Keywords

Galilean invariance Aerodynamic force theory Unsteady flow Flow diagnoses 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 11472016).

References

  1. 1.
    Vogel, S.: Flight in drosophila. III. Aerodynamic characteristics of fly wings and wing models. J. Exp. Biol. 44, 431–443 (1967)Google Scholar
  2. 2.
    Willmott, A.P., Ellington, C.P.: The mechanics of flight in the hawkmoth Manduca sexta. II. Aerodynamic consequences of kinematic and morphological variation. J. Exp. Biol. 200, 2723–2745 (1997)Google Scholar
  3. 3.
    Sun, M., Wu, J.H.: Large aerodynamic force generation by a sweeping wing at low Reynolds number. Acta Mech. Sin. 20, 24–31 (2004)CrossRefGoogle Scholar
  4. 4.
    McMasters, J.H.: The flight of the bumblebee and related myths of entomological engineering: bees help bridge the gap between science and engineering. Am. Scientist 77(2), 164–169 (1989)Google Scholar
  5. 5.
    Ellington, C.P., van den Berg, C., Thomas, A.P., et al.: Leading-edge vortices in insect flight. Nature 384, 626–630 (1996).  https://doi.org/10.1038/384626a0 CrossRefGoogle Scholar
  6. 6.
    Bomphrey, R.J., Lawson, N.J., Harding, N.J., et al.: The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex. J. Exp. Biol. 208, 1079–1094 (2005)CrossRefGoogle Scholar
  7. 7.
    Shyy, W., Lian, Y., Liu, H., et al.: Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press, Cambridge (2007)Google Scholar
  8. 8.
    Eldredge, J.D., Jones, A.R.: Leading-edge vortices: mechanics and modeling. Annu. Rev. Fluid Mech. 51, 75–104 (2019)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Li, G.J., Lu, X.Y.: Force and power of flapping plates in a fluid. J. Fluid Mech. 712, 598–613 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wang, S.Z., He, G., Zhang, X.: Self-propulsion of flapping bodies in viscous fluids: recent advances and perspectives. Acta Mech. Sin. 32, 980–990 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Liu, H., Kolomenskiy, D., Nakata, T., et al.: Unsteady bio-fluid dynamics in flying and swimming. Acta Mech. Sinica 33(4), 663–684 (2017)CrossRefGoogle Scholar
  12. 12.
    Wu, J., Liu, L., Liu, T.: Fundamental theories of aerodynamic force in viscous and compressible complex flows. Prog. Aerosp. Sci. 99, 27–63 (2018)CrossRefGoogle Scholar
  13. 13.
    Yu, Y.: The virtual power principle in fluid mechanics. J. Fluid Mech. 744, 310–328 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Quartapelle, L., Napolitano, M.: Force and moment in incompressible flows. AIAA J. 21, 911–913 (1983)CrossRefGoogle Scholar
  15. 15.
    Chang, C.C.: Potential flow and forces for incompressible viscous flow. Proc. R. Soc. Lond. Ser. A 437(1901), 517–525 (1992)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hsieh, C.T., Chang, C.C., Chu, C.C.: Revisiting the aerodynamics of hovering flight using simple models. J. Fluid Mech. 623, 121–148 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gao, A.K., Zou, S.F., Shi, Y., et al.: Passing-over leading-edge vortex: the thrust booster in heaving airfoil. AIP Adv. 9(3), 035314 (2019)CrossRefGoogle Scholar
  18. 18.
    Wu, J.Z., Ma, H.Y., Zhou, M.D.: Vorticity and Vortex Dynamics, Springer, Berlin (2006), pp. 617–620Google Scholar
  19. 19.
    Burgers, J.M.: On the resistance of fluid and vortex motion. Proc. K. Akad. Wet. 23, 774–782 (1920)Google Scholar
  20. 20.
    Wu, J.C.: Theory for aerodynamic force and moment in viscous flows. AIAA J. 19(4), 432–441 (1981)CrossRefGoogle Scholar
  21. 21.
    Lighthill, M.J.: An Informal Introduction to Theoretical Fluid Mechanics. Clarendon Press, Oxford (1986)zbMATHGoogle Scholar
  22. 22.
    Meng, X.G., Sun, M.: Aerodynamics and vortical structures in hovering fruitflies. Phys. Fluids 27(3), 031901 (2015)CrossRefGoogle Scholar
  23. 23.
    Kang, L.L., Liu, L.Q., Su, W.D., et al.: Minimum-domain impulse theory for unsteady aerodynamic force. Phys. Fluids 30(1), 016107 (2018)CrossRefGoogle Scholar
  24. 24.
    Cantwell, C.D., Moxeya, D., Comerforda, A., et al.: Nektar++: an open-source spectral/hp element framework. Comput. Phys. Communs. 192, 205–219 (2015)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Turbulence and Complex Systems, College of EngineeringPeking UniversityBeijingChina

Personalised recommendations