Advertisement

Acta Mechanica Sinica

, Volume 35, Issue 6, pp 1191–1209 | Cite as

Viscoelastic models revisited: characteristics and interconversion formulas for generalized Kelvin–Voigt and Maxwell models

  • A. Serra-Aguila
  • J. M. Puigoriol-Forcada
  • G. Reyes
  • J. MenachoEmail author
Research Paper
  • 120 Downloads

Abstract

Generalized Kelvin–Voigt and Maxwell models using Prony series are some of the most well-known models to characterize the behavior of polymers. The simulation software for viscoelastic materials generally implement only some material models. Therefore, for the practice of the engineer, it is very useful to have formulas that establish the equivalence between different models. Although the existence of these relationships is a well-established fact, moving from one model to another involves a relatively long process. This article presents a development of the relationships between generalized Kelvin–Voigt and Maxwell models using the aforementioned series and their respective relaxation and creep coefficients for one and two summations. The relationship between the singular points (maximums, minimums and inflexion points) is also included.

Keywords

Viscoelasticity Dynamic mechanical analysis Mechanical vibrations 

References

  1. 1.
    Tschoegl, N.W.: Time dependence in material properties: an overview. Mech. Time Depend. Mater. 1, 3–31 (1997)CrossRefGoogle Scholar
  2. 2.
    Casula, G., Carcione, J.: Generalized mechanical model analogies of linear viscoelastic behaviour. Bolletino di Geofis. Teor. ed Appl. 34, 235–256 (1992)Google Scholar
  3. 3.
    Menard, K.P., Peter, K.: Dynamic Mechanical Analysis: a Practical Introduction. CRC Press, Washington DC (1999)CrossRefGoogle Scholar
  4. 4.
    Gutierrez-Lemini, D.: Engineering Viscoelasticity. Springer, New York (2014)CrossRefGoogle Scholar
  5. 5.
    Drozdov, A.D.: Finite Elasticity and Viscoelasticity. World Scientific Publishing, Hong Kong (1996)CrossRefGoogle Scholar
  6. 6.
    Chawla, A., Mukherjee, S., Karthikeyan, B.: Characterization of human passive muscles for impact loads using genetic algorithm and inverse finite element methods. Biomech. Model. Mechanobiol. 8, 67–76 (2009)CrossRefGoogle Scholar
  7. 7.
    Fatemifar, F., Salehi, M., Adibipoor, R., et al.: Three-phase modeling of viscoelastic nanofiber-reinforced matrix. J. Mech. Sci. Technol. 28, 1039–1044 (2014)CrossRefGoogle Scholar
  8. 8.
    Matter, Y.S., Darabseh, T.T., Mourad, A.H.I.: Flutter analysis of a viscoelastic tapered wing under bending–torsion loading. Meccanica 53, 3673–3691 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Forte, A.E., Gentleman, S.M., Dini, D.: On the characterization of the heterogeneous mechanical response of human brain tissue. Biomech. Model. Mechanobiol. 16, 907–920 (2017)CrossRefGoogle Scholar
  10. 10.
    Ding, H.: Steady-state responses of a belt-drive dynamical system under dual excitations. Acta Mech. Sin. 32, 156–169 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Manda, K., Xie, S., Wallace, R.J., et al.: Linear viscoelasticity—bone volume fraction relationships of bovine trabecular bone. Biomech. Model. Mechanobiol. 15, 1631–1640 (2016)CrossRefGoogle Scholar
  12. 12.
    Nantasetphong, W., Jia, Z., Amirkhizi, A., et al.: Dynamic properties of polyurea-milled glass composites. Part I: experimental characterization. Mech. Mater. 98, 142–153 (2016)CrossRefGoogle Scholar
  13. 13.
    Liu, H., Yang, J., Liu, H.: Effect of a viscoelastic target on the impact response of a flat-nosed projectile. Acta Mech. Sin. 34, 162–174 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Li, Y., Hong, Y., Xu, G.K., et al.: Non-contact tensile viscoelastic characterization of microscale biological materials. Acta Mech. Sin. 34, 589–599 (2018)CrossRefGoogle Scholar
  15. 15.
    Bai, T., Tsvankin, I.: Time-domain finite-difference modeling for attenuative anisotropic media. Geophysics 81, C69–C77 (2016)CrossRefGoogle Scholar
  16. 16.
    Zhang, Y., Lian, Z., Zhou, M., et al.: Viscoelastic behavior of a casing material and its utilization in premium connections in high-temperature gas wells. Adv. Mech. Eng. 10, 168781401881745 (2018)CrossRefGoogle Scholar
  17. 17.
    Baumgaertel, M., Winter, H.H.: Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheol. Acta 28, 511–519 (1989)CrossRefGoogle Scholar
  18. 18.
    Nikonov, A., Davies, A.R., Emri, I.: The determination of creep and relaxation functions from a single experiment. J. Rheol. 49, 1193–1211 (2005)CrossRefGoogle Scholar
  19. 19.
    Sorvari, J., Malinen, M.: On the direct estimation of creep and relaxation functions. Mech. Time Depend. Mater. 11, 143–157 (2007)CrossRefGoogle Scholar
  20. 20.
    Renaud, F., Dion, J.: A new identification method of viscoelastic behavior: application to the generalized Maxwell model. Mech. Syst. Signal Process. 25, 991–1010 (2011)CrossRefGoogle Scholar
  21. 21.
    Bang, K., Jeong, H.Y.: Combining stress relaxation and rheometer test results in modeling a polyurethane stopper. J. Mech. Sci. Technol. 26, 1849–1855 (2012)CrossRefGoogle Scholar
  22. 22.
    Soo Cho, K.: Power series approximations of dynamic moduli and relaxation spectrum. J. Rheol. 57, 679–697 (2013)CrossRefGoogle Scholar
  23. 23.
    Chen, D.L., Chiu, T.C., Chen, T.C., et al.: Using DMA to simultaneously acquire Young’s relaxation modulus and time-dependent Poisson’s ratio of a viscoelastic material. Procedia Eng. 79, 153–159 (2014)CrossRefGoogle Scholar
  24. 24.
    Pacheco, J.E.L., Bavastri, C.A., Pereira, J.T.: Viscoelastic relaxation modulus characterization using Prony series. Lat. Am. J. Solids Struct. 12, 420–445 (2015)CrossRefGoogle Scholar
  25. 25.
    Kim, M., Bae, J.E., Kang, N., et al.: Extraction of viscoelastic functions from creep data with ringing. J. Rheol. 59, 237–252 (2015)CrossRefGoogle Scholar
  26. 26.
    Jung, J.W., Hong, J.W., Lee, H.K., et al.: Estimation of viscoelastic parameters in Prony series from shear wave propagation. J. Appl. Phys. 119, 234701 (2016)CrossRefGoogle Scholar
  27. 27.
    Bonfitto, A., Tonoli, A., Amati, N.: Viscoelastic dampers for rotors: modeling and validation at component and system level. Appl. Sci. 7, 1181 (2017)CrossRefGoogle Scholar
  28. 28.
    Rubio-Hernández, F.J.: Rheological behavior of fresh cement pastes. Fluids 3, 106 (2018)CrossRefGoogle Scholar
  29. 29.
    Poul, M.K., Zerva, A.: Time-domain PML formulation for modeling viscoelastic waves with Rayleigh-type damping in an unbounded domain: theory and application in ABAQUS. Finite Elem. Anal. Des. 152, 1–16 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Gross, B.: On creep and relaxation. J. Appl. Phys. 18, 212–221 (1947)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Gross, B.: Mathematical Structure of the Theories of Viscoelasticity. Hermann & Co., Paris (1953)zbMATHGoogle Scholar
  32. 32.
    Loy, R.J., Anderssen, R.S.: Interconversion relationships for completely monotone functions. SIAM J. Math. Anal. 46, 2008–2032 (2014)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Park, S.W., Schapery, R.A.: Methods of interconversion between linear viscoelastic material functions. Part I: a numerical method based on Prony series. Int. J. Solids Struct. 36, 1653–1675 (1999)CrossRefGoogle Scholar
  34. 34.
    Schapery, R.A., Park, S.W.: Methods of interconversion between linear viscoelastic material functions. Part II: an approximate analytical method. Int. J. Solids Struct. 36, 1677–1699 (1999)CrossRefGoogle Scholar
  35. 35.
    Sorvari, J., Malinen, M.: Numerical interconversion between linear viscoelastic material functions with regularization. Int. J. Solids Struct. 44, 1291–1303 (2007)CrossRefGoogle Scholar
  36. 36.
    Luk-Cyr, J., Crochon, T., Li, C., et al.: Interconversion of linearly viscoelastic material functions expressed as Prony series: a closure. Mech. Time Depend. Mater. 17, 53–82 (2013)CrossRefGoogle Scholar
  37. 37.
    Loy, R.J., de Hoog, F.R., Anderssen, R.S.: Interconversion of Prony series for relaxation and creep. J. Rheol. 59, 1261–1270 (2015)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. Serra-Aguila
    • 1
  • J. M. Puigoriol-Forcada
    • 2
  • G. Reyes
    • 2
  • J. Menacho
    • 2
    Email author
  1. 1.Passive Safety DepartmentApplus + IDIADA Spain Tarragona HQTarragonaSpain
  2. 2.IQS-School of EngineeringUniversitat Ramon LlullBarcelonaSpain

Personalised recommendations