Advertisement

Experimental and numerical study of the effect of pulsatile flow on wall displacement oscillation in a flexible lateral aneurysm model

  • L. Z. MuEmail author
  • X. Y. Li
  • Q. Z. Chi
  • S. Q. Yang
  • P. D. Zhang
  • C. J. Ji
  • Y. He
  • G. Gao
Research Paper

Abstract

This study experimentally and numerically investigated the effect of pulsatile flow of different frequencies and outflow resistance on wall deformation in a lateral aneurysm. A method for constructing a flexible aneurysm model was developed, and a self-designed piston pump was used to provide the pulsatile flow conditions. A fluid–structure interaction simulation was applied for comparison with and analysis of experimental findings. The maximum wall displacement oscillation increased as the pulsation frequency and outflow resistance increased, especially at the aneurysm dome. There is an obvious circular motion of the vortex center accompanying the periodic inflow fluctuation, and the pressure at the aneurysm dome at peak flow increased as the pulsatile flow frequency and terminal flow resistance increased. These results could explain why abnormal blood flow with high frequency and high outflow resistance is one of the risk factors for aneurysm rupture.

Keywords

Lateral aneurysm In vitro experiment Pulsatile flow Wall displacement oscillation Fluid–structure interaction simulation 

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grants 11602053 and 51576033) and the Fundamental Research Funds for the Central Universities (Grant DUT18JC23).

References

  1. 1.
    Schievink, W.I.: Intracranial aneurysms. N. Engl. J. Med. 336, 28–40 (1997)CrossRefGoogle Scholar
  2. 2.
    Liou, T.M., Liou, S.N.: A review on in vitro studies of hemodynamic characteristics in terminal and lateral aneurysm models. Proc. Natl. Sci. Counc. Republ. China Part B Life Sci. 23, 133–148 (1999)Google Scholar
  3. 3.
    Macdonald, D.J., Finlay, H.M., Canham, P.B.: Directional wall strength in saccular brain aneurysms from polarized light microscopy. Ann. Biomed. Eng. 28, 533–542 (2000)CrossRefGoogle Scholar
  4. 4.
    Taylor, C.L., Yuan, Z., Selman, W.R., et al.: Cerebral arterial aneurysm formation and rupture in 20,767 elderly patients: hypertension and other risk factors. J. Neurosurg. 83, 812–819 (1995)CrossRefGoogle Scholar
  5. 5.
    Inci, S., Spetzler, R.F.: Intracranial aneurysms and arterial hypertension: a review and hypothesis. Surg. Neurol. 53, 530–542 (2000)CrossRefGoogle Scholar
  6. 6.
    Kety, S.S., King, B.D., Horvath, S.M., et al.: The effects of an acute reduction in blood pressure by means of differential spinal sympathetic block on the cerebral circulation of hypertensive patients. J. Clin. Invest. 29, 402–407 (1950)CrossRefGoogle Scholar
  7. 7.
    Liang, F., Fukasaku, K., Liu, H., et al.: A computational model study of the influence of the anatomy of the circle of Willis on cerebral hyperperfusion following carotid artery surgery. Biomed. Eng. Online 10, 84 (2011)CrossRefGoogle Scholar
  8. 8.
    Ji, C.J., He, Y.: A modeling study of blood flow and oxygen transport in the circle of Willis. Chin. J. Theor. Appl. Mech. 3, 591–599 (2012). (In Chinese)Google Scholar
  9. 9.
    Chen, J., Wang, S., Ding, G., et al.: Patient-specific blood dynamic simulations in assessing endovascular occlusion of intracranial aneurysms. J. Hydrodyn. 21, 271–276 (2009)CrossRefGoogle Scholar
  10. 10.
    Shojima, M., Oshima, M., Takagi, K., et al.: Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35, 2500–2505 (2004)CrossRefGoogle Scholar
  11. 11.
    Torii, R., Oshima, M., Kobayashi, T., et al.: Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput. Mech. 38, 482–490 (2006)CrossRefzbMATHGoogle Scholar
  12. 12.
    Torii, R., Oshima, M., Kobayashi, T., et al.: Influence of wall elasticity in patient-specific hemodynamic simulations. Comput. Fluids 36, 160–168 (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Torii, R., Oshima, M., Kobayashi, T., et al.: Fluid-structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput. Meth. Appl. Mech. Eng. 198, 3613–3621 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ahmed, S., Sutalo, I.D., Kavnoudias, H., et al.: Fluid structure interaction modelling of a patient specific cerebral aneurysm: effect of hypertension and modulus of elasticity. In: 16th Australasian Fluid Mechanics Conference, Crown Plaza, Gold Coast, Austrialia, December 2–7 (2007)Google Scholar
  15. 15.
    Valencia, A., Torres, F.: Effects of hypertension and pressure gradient in a human cerebral aneurysm using fluid structure interaction simulations. J. Mech. Med. Biol. 17, 1750018 (2017)CrossRefGoogle Scholar
  16. 16.
    Shamloo, A., Nejad, M.A., Saeedi, M.: Fluid-structure interaction simulation of a cerebral aneurysm: effects of endovascular coiling treatment and aneurysm wall thickening. J. Mech. Behav. Biomed. Mater. 74, S1751616117302096 (2017)CrossRefGoogle Scholar
  17. 17.
    Long, Y., Yu, H., Zhuo, Z., et al.: A geometric scaling model for assessing the impact of aneurysm size ratio on hemodynamic characteristics. Biomed. Eng. Online 13, 17 (2014)CrossRefGoogle Scholar
  18. 18.
    Chen, J., Wang, S., Ding, G., et al.: The effect of aneurismal-wall mechanical properties on patient-specific hemodynamic simulations: two clinical case reports. Acta Mech. Sin. 25, 677–688 (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    Ahmed, S., Šutalo, I.D., Kavnoudias, H., et al.: Numerical investigation of hemodynamics of lateral cerebral aneurysm following coil embolization. Eng. Appl. Comput. Fluid Mech. 5, 329–340 (2011)Google Scholar
  20. 20.
    Chodzyński, K.J., Eker, O.F., Vanrossomme, A.E., et al.: Does the gravity orientation of saccular aneurysms influence hemodynamics? An experimental study with and without flow diverter stent. J. Biomech. 49, 3808–3814 (2016)CrossRefGoogle Scholar
  21. 21.
    Usmani, A.Y., Muralidhar, K.: Pulsatile flow in a compliant stenosed asymmetric model. Exp. Fluids 57, 186 (2016)CrossRefGoogle Scholar
  22. 22.
    Fahy, P., Delassus, P., Mccarthy, P., et al.: An in vitro assessment of the cerebral hemodynamics through three patient specific circle of Willis geometries. J. Biomech. Eng. Trans. ASME. 136, 011007 (2014)CrossRefGoogle Scholar
  23. 23.
    Alastruey, J., Parker, K., Peiro, J.S., et al.: Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J. Biomech. 40, 1794–1805 (2007)CrossRefGoogle Scholar
  24. 24.
    Monson, K.L., Goldsmith, W., Barbaro, N.M., et al.: Significance of source and size in the mechanical response of human cerebral blood vessels. J. Biomech. 38, 737–744 (2005)CrossRefGoogle Scholar
  25. 25.
    Tateshima, S., Murayama, Y., Villablanca, J.P., et al.: In vitro measurement of fluid induced wall shear stress in unruptured cerebral aneurysms harboring blebs. Stroke 34, 187–192 (2003)CrossRefGoogle Scholar
  26. 26.
    Nichols, W.O., Rourke, M., Vlachopoulos, C.: McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. CRC Press, Boca Raton (2011)Google Scholar
  27. 27.
    Lu, G., Huang, L., Zhang, X.L., et al.: Influence of hemodynamic factors on rupture of intracranial aneurysms: patient-specific 3D mirror aneurysms model computational fluid dynamics simulation. Am. J. Neuroradiol. 32, 1255–1261 (2011)CrossRefGoogle Scholar
  28. 28.
    Yu, H., Huang, G.P., Ludwig, B.R., et al.: An in-vitro flow study using an artificial circle of Willis model for validation of an existing one-dimensional numerical model. Ann. Biomed. Eng. 47, 1023–1037 (2019)CrossRefGoogle Scholar
  29. 29.
    Mu, L.Z., Shao, H.W., He, Y., et al.: Construction of anatomically accurate finite element models of the human hand and a rat kidney. J. Mech. Med. Biol. 11, 1141–1164 (2011)CrossRefGoogle Scholar
  30. 30.
    Yu, Y., Liu, Y., Chen, Y.: Vortex dynamics behind a self-oscillating inverted flag placed in a channel flow: time-resolved particle image velocimetry measurements. Phys. Fluids 29, 125104 (2017)CrossRefGoogle Scholar
  31. 31.
    Ouyang, C.X., Zhou, F., Wang, W., et al.: Radial tensile properties of human femoral artery. J. Clin. Rehabil. Tissue Eng. Res. 12, 89–93 (2008). (In Chinese)Google Scholar
  32. 32.
    Yang, L.J., Xu, W.M., Ma, L.J., et al.: 8621 cases of the recruits recheck electrocardiogram inspection analysis. J. Electrocardiogram 2, 202–204 (2013). (Electronic Edition in Chinese)Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • L. Z. Mu
    • 1
    Email author
  • X. Y. Li
    • 1
  • Q. Z. Chi
    • 1
  • S. Q. Yang
    • 1
  • P. D. Zhang
    • 1
  • C. J. Ji
    • 2
  • Y. He
    • 1
  • G. Gao
    • 3
  1. 1.School of Energy and Power EngineeringDalian University of TechnologyDalianChina
  2. 2.School of Biomedical EngineeringCapital Medical UniversityBeijingChina
  3. 3.The First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina

Personalised recommendations