Advertisement

Design method for an acoustic cloak in flows by topology optimization

  • Zhengyu Ma
  • Oksana Stalnov
  • Xun HuangEmail author
Research Paper
  • 57 Downloads

Abstract

In this paper, a design method for an acoustic cloak in the presence of background mean flows is proposed by using topology optimization, which enables the associated fabrication of the cloaking design. The density-based topology optimization method is used to allocate the designated materials, thus providing the structure of the cloak. The optimization problem is efficiently solved with the gradient-based globally convergent method of moving asymptotes, which utilizes the derivative information from the finite element simulation studies of the linearized acoustic potential equation. This paper introduces the whole design method first then numerically demonstrates the corresponding performance, which shall constitute the main contribution of the present work.

Keywords

Aeroacoustics Acoustic cloaking Topology optimization 

Notes

Acknowledgements

This work was supported by the Beijing Municipal Science & Technology Commission (Grant Z181100001018030), the National Natural Science Foundation of China (Grant 11561130148) and the Newton Advanced Fellowship from the Royal Society (Ref. NA14081).

References

  1. 1.
    Zhang, X.: Aircraft noise and its near field propagation computations. Acta Mech. Sin. 28, 960–977 (2012)CrossRefzbMATHGoogle Scholar
  2. 2.
    Peers, E., Huang, X.: High-order schemes for predicting computational aeroacoustic propagation with adaptive mesh refinement. Acta Mech. Sin. 29, 1–11 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ran, L., Ye, C., Wan, Z., et al.: Instability waves and low-frequency noise radiation in the subsonic chevron jet. Acta Mech. Sin. 34, 421–430 (2018)CrossRefGoogle Scholar
  4. 4.
    Astley, R.J., Sugimoto, R., Mustafi, P.: Computational aero-acoustics for fan duct propagation and radiation. Current status and application to turbofan liner optimisation. J. Sound Vib. 330, 3832–3845 (2011)CrossRefGoogle Scholar
  5. 5.
    Yang, C., Fang, Y., Zhao, C., et al.: On modeling the sound propagation through a lined duct with a modified ingard-myers boundary condition. J. Sound Vib. 424, 173–191 (2018)CrossRefGoogle Scholar
  6. 6.
    Peng, X., He, W., Liu, Y., et al.: Optomechanical soft metamaterials. Acta Mech. Sin. 33, 575–584 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fang, Y., Zhang, X., Zhou, J.: Acoustic porous metasurface for excellent sound absorption based on wave manipulation. J. Sound Vib. 434, 273–283 (2018)CrossRefGoogle Scholar
  8. 8.
    Huang, X., Zhong, S., Liu, X.: Acoustic invisibility in turbulent fluids by optimised cloaking. J. Fluid Mech. 749, 460–477 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chang, Z., Hu, J., Hu, G.: Transformation method and wave control. Acta Mech. Sin. 26, 889–898 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cummer, S.A., Schurig, D.: One path to acoustic cloaking. New J. Phys. 9, 45 (2007)CrossRefGoogle Scholar
  12. 12.
    Cummer, S.A., Popa, B.I., Schurig, D., et al.: Scattering theory derivation of a 3D acoustic cloaking shell. Phys. Rev. Lett. 100, 024301 (2008)CrossRefGoogle Scholar
  13. 13.
    Chen, H., Chan, C.T.: Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91, 183518 (2007)CrossRefGoogle Scholar
  14. 14.
    Farhat, M., Enoch, S., Guenneau, S., et al.: Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Phys. Rev. Lett. 101, 134501 (2008)CrossRefGoogle Scholar
  15. 15.
    Mitchell, T.R.C., McManus, T.M., Quevedo, T.O., et al.: Perfect surface wave cloaks. Phys. Rev. Lett. 111, 213901 (2013)CrossRefGoogle Scholar
  16. 16.
    McManus, T.M., Valiente-Kroon, J.A., Horsley, S.A.R., et al.: Illusions and cloaks for surface waves. Sci. Rep. 4, 5977 (2014)CrossRefGoogle Scholar
  17. 17.
    Milton, G.W., Briane, M., Willis, J.R.: On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006)CrossRefGoogle Scholar
  18. 18.
    Farhat, M., Guenneau, S., Enoch, S., et al.: Cloaking bending waves propagating in thin elastic plates. Phys. Rev. B 79, 033102 (2009)CrossRefGoogle Scholar
  19. 19.
    Bückmann, T., Thiel, M., Kadic, M., et al.: An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat. Commun. 5, 4130 (2014)CrossRefGoogle Scholar
  20. 20.
    Huang, X., Zhong, S., Stalnov, O.: Analysis of scattering from an acoustic cloak in a moving fluid. J. Acoust. Soc. Am. 135, 2571–2580 (2014)CrossRefGoogle Scholar
  21. 21.
    García-Meca, C., Carloni, S., Barceló, C., et al.: Analogue transformations in physics and their application to acoustics. Sci. Rep. 3, 2009 (2013)CrossRefGoogle Scholar
  22. 22.
    Umberto, I., Giorgio, P.: Convective correction of metafluid devices based on taylor transformation. J. Sound Vib. 443, 238–252 (2019)CrossRefGoogle Scholar
  23. 23.
    Guild, M.D., Alù, A., Haberman, M.R.: Cloaking of an acoustic sensor using scattering cancellation. Appl. Phys. Lett. 105, 023510 (2014)CrossRefGoogle Scholar
  24. 24.
    Zhang, S., Xia, C., Fang, N.: Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106, 024301 (2011)CrossRefGoogle Scholar
  25. 25.
    Sanchis, L., García-Chocano, V.M., Llopis-Pontiveros, R., et al.: Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere. Phys. Rev. Lett. 110, 124301 (2013)CrossRefGoogle Scholar
  26. 26.
    Lu, Z., Sanchis, L., Wen, J., et al.: Acoustic cloak based on bézier scatterers. Sci. Rep. 8, 12924 (2018)CrossRefGoogle Scholar
  27. 27.
    Svanberg, K.: A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim. 12, 555–573 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 (1989)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Turbulence and Complex Systems, Department of Aeronautics and Astronautics, College of EngineeringPeking UniversityBeijingChina
  2. 2.Faculty of Aerospace EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations