Advertisement

Acta Mechanica Sinica

, Volume 35, Issue 6, pp 1269–1278 | Cite as

Influence of coronary bifurcation angle on atherosclerosis

  • Zhaomiao LiuEmail author
  • Shengwei Zhao
  • Yunjie Li
  • Feng Shen
  • Yipeng Qi
  • Qi Wang
Research Paper
  • 86 Downloads

Abstract

Hemodynamics plays a crucial role in the development and progression of coronary atherosclerosis, which is prone to occur in branch bifurcation. An individual aortic-coronary artery model and three changed bifurcation angle models are constructed by Mimics and Freeform based on computed tomography angiography. The influence of different coronary bifurcation angles between left main (LM), left anterior descending (LAD), and left circumflex (LCX) on the blood flow field and related hemodynamic parameters are studied. It is shown that a wider bifurcation angle between LAD and LCX can cause a wider low-wall shear stress area, leading to atherosclerosis. Similarly, a decreased angle between LM and LAD is predisposed to prevent atherosclerosis. The results help to better understand the hemodynamic causes of atherosclerosis with various bifurcation angles in coronary arteries and to provide guidance for clinical assessment and prevention.

Keywords

Atherosclerosis Coronary artery Bifurcation angle Hemodynamics Wall shear stress 

Notes

Acknowledgements

The authors are grateful for the support of the Specialized Research Fund for the Doctoral Program of Higher Education (Grant 20131103110025), the Key Program of Science and Technology Plan of Beijing Municipal Education Commission (Grant KZ201710005006), and the National Natural Science Foundation of China (Grant 81601557).

References

  1. 1.
    Burzotta, F., Lassen, J.F., Banning, A.P., et al.: Percutaneous coronary intervention in left main coronary artery disease: the 13th consensus document from the European Bifurcation Club. EuroIntervention 14, 112–120 (2018)CrossRefGoogle Scholar
  2. 2.
    Ajayi, N.O., Lazarus, L., Vanker, E.A., et al.: The impact of left main coronary artery morphology on the distribution of atherosclerotic lesions in its branches. Folia Morphol. 72, 197–201 (2013)CrossRefGoogle Scholar
  3. 3.
    Ragosta, M.: Left main coronary artery disease: importance, diagnosis, assessment, and management. Curr. Probl. Cardiol. 40, 93–126 (2015)CrossRefGoogle Scholar
  4. 4.
    Lefèvre, T., Girasis, C., Lassen, J.F.: Differences between the left main and other bifurcations. EuroIntervention J. EuroPCR Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol. 11, 106–110 (2015)Google Scholar
  5. 5.
    Pflederer, T., Ludwig, J., Ropers, D., et al.: Measurement of coronary artery bifurcation angles by multidetector computed tomography. Invest. Radiol. 41, 793–798 (2006)CrossRefGoogle Scholar
  6. 6.
    Malvè, M., Gharib, A.M., Yazdani, S.K., et al.: Tortuosity of coronary bifurcation as a potential local risk factor for atherosclerosis: CFD steady state study based on in vivo dynamic CT measurements. Ann. Biomed. Eng. 43, 82–93 (2015)CrossRefGoogle Scholar
  7. 7.
    Konishi, T., Funayama, N., Yamamoto, T., et al.: Relationship between left main and left anterior descending arteries bifurcation angle and coronary artery calcium score in chronic kidney disease: a 3-dimensional analysis of coronary computed tomography. PLoS ONE 13, e0198566 (2018)CrossRefGoogle Scholar
  8. 8.
    Cui, Y., Zeng, W., Yu, J., et al.: Quantification of left coronary bifurcation angles and plaques by coronary computed tomography angiography for prediction of significant coronary stenosis: a preliminary study with dual-source CT. PLoS ONE 12, e0174352 (2017)CrossRefGoogle Scholar
  9. 9.
    Cademartiri, F., La Grutta, L., Malagó, R., et al.: Assessment of left main coronary artery atherosclerotic burden using 64-slice CT coronary angiography: correlation between dimensions and presence of plaques. Radiol. Med. (Torino) 114, 358–369 (2009)CrossRefGoogle Scholar
  10. 10.
    Yamada, R., Tremmel, J.A., Tanaka, S., et al.: Functional versus anatomic assessment of myocardial bridging by intravascular ultrasound: impact of arterial compression on proximal atherosclerotic plaque. J. Am. Heart Assoc. 5, e001735 (2016)CrossRefGoogle Scholar
  11. 11.
    Malcolm, A.D., Roach, M.R.: Flow disturbances at the apex and lateral angles of a variety of bifurcation models and their role in development and manifestations of arterial disease. Stroke 10, 335–343 (1979)CrossRefGoogle Scholar
  12. 12.
    Chaichana, T., Sun, Z., Jewkes, J.: Computation of hemodynamics in the left coronary artery with variable angulations. J. Biomech. 44, 1869–1878 (2011)CrossRefGoogle Scholar
  13. 13.
    Chiastra, C., Gallo, D., Tasso, P., et al.: Healthy and diseased coronary bifurcation geometries influence near-wall and intravascular flow: a computational exploration of the hemodynamic risk. J. Biomech. 58, 79–88 (2017)CrossRefGoogle Scholar
  14. 14.
    Doutel, E., Pinto, S.I.S., Campos, J., et al.: Link between deviations from Murray’s Law and occurrence of low wall shear stress regions in the left coronary artery. J. Theor. Biol. 402, 89–99 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sun, Z., Cao, Y.: Multislice CT angiography assessment of left coronary artery: correlation between bifurcation angle and dimensions and development of coronary artery disease. Eur. J. Radiol. 79, e90–e95 (2011)CrossRefGoogle Scholar
  16. 16.
    Malvè, M., García, A., Ohayon, J., et al.: Unsteady blood flow and mass transfer of a human left coronary artery bifurcation: FSI versus CFD. Int. Commun. Heat Mass Transf. 39, 745–751 (2012)CrossRefGoogle Scholar
  17. 17.
    Chen, X., Gao, Y., Lu, B., et al.: Hemodynamics in coronary arterial tree of serial stenoses. PLoS ONE 11, e0163715 (2016)CrossRefGoogle Scholar
  18. 18.
    Bahrami, S., Norouzi, M.: A numerical study on hemodynamics in the left coronary bifurcation with normal and hypertension conditions. Biomech. Model. Mechanobiol. 17, 1785–1796 (2018)CrossRefGoogle Scholar
  19. 19.
    Zaromytidou, M., Siasos, G., Coskun, A.U., et al.: Intravascular hemodynamics and coronary artery disease: new insights and clinical implications. Hell. J. Cardiol. 57, 389–400 (2016)CrossRefGoogle Scholar
  20. 20.
    Rikhtegar, F., Knight, J.A., Olgac, U., et al.: Choosing the optimal wall shear parameter for the prediction of plaque location—a patient-specific computational study in human left coronary arteries. Atherosclerosis 221, 432–437 (2012)CrossRefGoogle Scholar
  21. 21.
    He, X., Ku, D.N.: Pulsatile flow in the human left coronary artery bifurcation: average conditions. J. Biomech. Eng. 118, 74–82 (1996)CrossRefGoogle Scholar
  22. 22.
    Grøttum, P., Svindland, A., Wallrøe, L.: Localization of atherosclerotic lesions in the bifurcation of the main left coronary artery. Atherosclerosis 47, 55–62 (1983)CrossRefGoogle Scholar
  23. 23.
    Liu, H., Liang, F., Wong, J., et al.: Multi-scale modeling of hemodynamics in the cardiovascular system. Acta Mech. Sin. 31, 446–464 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kim, H.J., Vignon-Clementel, I.E., Coogan, J.S., et al.: Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann. Biomed. Eng. 38, 3195–3209 (2010)CrossRefGoogle Scholar
  25. 25.
    Kashefi, A., Mahdinia, M., Firoozabadi, B., et al.: Multidimensional modeling of the stenosed carotid artery: a novel CAD approach accompanied by an extensive lumped model. Acta Mech. Sin. 30, 259–273 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Moghadam, M.E., Vignon-Clementel, I.E., Figliola, R., et al.: A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J. Comput. Phys. 244, 63–79 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Tran, J.S., Schiavazzi, D.E., Ramachandra, A.B., et al.: Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations. Comput. Fluids 142, 128–138 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kung, E.O., Les, A.S., Figueroa, C.A., et al.: In vitro validation of finite element analysis of blood flow in deformable models. Ann. Biomed. Eng. 39, 1947–1960 (2011)CrossRefGoogle Scholar
  29. 29.
    Kung, E., Kahn, A.M., Burns, J.C., et al.: In vitro validation of patient-specific hemodynamic simulations in coronary aneurysms caused by Kawasaki disease. Cardiovasc. Eng. Technol. 5, 189–201 (2014)CrossRefGoogle Scholar
  30. 30.
    Duanmu, Z., Yin, M., Fan, X., et al.: A patient-specific lumped-parameter model of coronary circulation. Sci. Rep. 8, 874 (2018)CrossRefGoogle Scholar
  31. 31.
    Lan, H., Updegrove, A., Wilson, N.M., et al.: A re-engineered software interface and workflow for the open-source simvascular cardiovascular modeling package. J. Biomech. Eng. 140, 024501 (2018)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhaomiao Liu
    • 1
    Email author
  • Shengwei Zhao
    • 1
  • Yunjie Li
    • 1
  • Feng Shen
    • 1
  • Yipeng Qi
    • 1
  • Qi Wang
    • 2
  1. 1.College of Mechanical Engineering and Applied Electronics TechnologyBeijing University of TechnologyBeijingChina
  2. 2.Department of CardiologyPLA General HospitalBeijingChina

Personalised recommendations