Advertisement

Acta Mechanica Sinica

, Volume 35, Issue 4, pp 729–739 | Cite as

Linear optimal control of transient growth in turbulent channel flows

  • Yang Song
  • Chunxiao XuEmail author
  • Weixi Huang
Research Paper
  • 54 Downloads

Abstract

This work investigates the suppression of linear transient growth in turbulent channel flows via linear optimal control. Two control algorithms are employed, i.e. the linear quadratic regulator (LQR) control based on full information of flow fields, and the linear quadratic Gaussian (LQG) control based on the information measured at walls. The influence of these controls on the development of both small-scale and large-scale perturbations is considered. The results show that the energy amplification of large-scale perturbations is significantly suppressed by both LQR and LQG controls, while small-scale perturbations are affected only by LQR control. The effects of the weighting parameters and control price on control performance are also analyzed for both controls, which reveals that different weighting parameters in the cost function do not qualitatively change the evaluation of control performance. As the control price increases, the effectiveness of both controls decreases markedly. For small-scale perturbations, the upper limit of the effective range of control price is lower than that for large-scale perturbations. When the Reynolds number is increased, it indicates that both LQR and LQG control become more effective in suppressing the energy amplification of large-scale perturbations.

Keywords

Linear optimal control Turbulent channel flow Optimal transient growth 

References

  1. 1.
    Choi, H., Moin, P., Kim, J.: Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75–110 (1994)CrossRefzbMATHGoogle Scholar
  2. 2.
    Howard, R.J.A., Sandham, N.D.: Simulation and modelling of a skewed turbulent channel flow. Flow Turbul. Combust. 65, 83–109 (2000)CrossRefzbMATHGoogle Scholar
  3. 3.
    Kang, S., Choi, H.: Active wall motions for skin-friction drag reduction. Phys. Fluids 12(12), 3301–3304 (2000)CrossRefzbMATHGoogle Scholar
  4. 4.
    Xu, C.X., Deng, B.Q., Huang, W.X., et al.: Coherent structures in wall turbulence and mechanism for drag reduction control. Sci. China Phys. Mech. Astron. 6(56), 1053–1061 (2013)CrossRefGoogle Scholar
  5. 5.
    Kim, J.: Physics and control of wall turbulence for drag reduction. Philos. Trans. R. Soc. A 1940(369), 1396–1411 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cossu, C., Hwang, Y.Y.: Self-sustaining processes at all scales in wall-bounded turbulent shear flows. Philos. Trans. R. Soc. A 375(2089), 20160088 (2017)CrossRefGoogle Scholar
  7. 7.
    Jiménez, J.: How linear is wall-bounded turbulence? Phys. Fluids 25(11), 110814 (2011)CrossRefGoogle Scholar
  8. 8.
    Kerswell, R.R.: Nonlinear nonmodal stability theory. Annu. Rev. Fluid Mech. 50, 319–345 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Zhang, A., Dong, M., Zhang, Y.: Receptivity of secondary instability modes in streaky boundary layers. Phys. Fluids 30, 114102 (2018)CrossRefGoogle Scholar
  10. 10.
    Hammond, E.P., Bewley, T.R., Moin, P.: Observed mechanisms for turbulence attenuation and enhancement in opposition-controlled wall bounded flows. Phys. Fluids 10(9), 2421–2423 (1998)CrossRefGoogle Scholar
  11. 11.
    Chang, Y., Collis, S.S., Ramakrishnan, S.: Viscous effect in control of near-wall turbulence. Phys. Fluids 14(11), 4069–4080 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Deng, B.Q., Xu, C.X., Huang, W.X.: Origin of effectiveness degradation in active drag reduction control of turbulent channel flow at \(Re_\tau =1000\). J. Turbul. 17(8), 758–786 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, Y.S., Huang, W.X., Xu, C.X.: Active control for drag reduction in turbulent channel flow: the opposition control schemes revisited. Fluid Dyn. Res. 48, 055501 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Song, Y., Xu, C.X., Huang, W.X.: Effect of active control on linear transient growth in turbulent channel flow. J. Turbul. 18(3), 203–218 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Butler, K.M., Farrell, B.F.: Optimal perturbations and streak spacing in wall-bounded turbulent shear flow. Phys. Fluids 3(5), 774–777 (1993)CrossRefGoogle Scholar
  16. 16.
    Del Àlamo, J.C., Jiménez, J.: Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205–213 (2006)CrossRefzbMATHGoogle Scholar
  17. 17.
    Pujals, G., Garcia-Villalba, M., Cossu, C., et al.: A note on optimal transient growth in turbulent channel flows. Phys. Fluids 21(1), 0151091 (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Cossu, C., Pujals, G., Depardon, S.: Optimal transient growth and very large-scale structures in turbulent boundary layers. J. Fluid Mech. 619, 79–94 (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    Hwang, Y.Y., Cossu, C.: Self-sustained process at large scales in turbulent channel flow. Phys. Rev. Lett. 4(105), 044505 (2010)CrossRefGoogle Scholar
  20. 20.
    Hwang, Y.Y., Bengana, Y.: Self-sustaining process of minimal attached eddies in turbulent channel flow. J. Fluid Mech. 795, 708–738 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Bewley, T.R., Liu, S.: Optimal and robust control and estimation of linear paths to transition. J. Fluid Mech. 365, 305–349 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Xiao, D., Papadakis, G.: Nonlinear optimal control of bypass transition in a boundary layer flow. Phys. Fluids 29(5), 054103 (2016)CrossRefGoogle Scholar
  23. 23.
    Lim, J., Kim, J.: A singular value analysis of boundary layer control. Phys. Fluids 16(6), 1980–1988 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lee, K.H., Cortelezzi, L., Kim, J., et al.: Application of reduced-order control to turbulent flows for drag reduction. Phys. Fluids 5(13), 1321–1330 (2001)CrossRefzbMATHGoogle Scholar
  25. 25.
    Martinelli, F., Quadrio, M., McKernan, J., et al.: Linear feedback control of transient energy growth and control performance limitations in subcritical plane Poiseuille flow. Phys. Fluids 23(1), 014103 (2001)CrossRefGoogle Scholar
  26. 26.
    Cess, R.D.: A survey of the literature on heat transfer in turbulent tube flow. Resarch Report No.8-0529-R24, Westinghouse (1958)Google Scholar
  27. 27.
    Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  28. 28.
    Deng, B.Q., Xu, C.X., Huang, W.X., et al.: Effect of active control on optimal structures in wall turbulence. Sci. China Phys. Mech. Astron. 56(2), 290–297 (2013)CrossRefGoogle Scholar
  29. 29.
    Kim, J., Lim, J.: A linear process in wall-bounded turbulent shear flows. Phys. Fluids 8(12), 1885–1888 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lim, J.: Control of wall-bounded turbulent shear flows using modern control theory. PhD thesis. University of California, Los Angeles (2004)Google Scholar
  31. 31.
    Song, Y., Xu, C.X., Huang, W.X., et al.: Optimal transient growth in turbulent pipe flow. Appl. Math. Mech. Engl. Ed. 36(8), 1057–1072 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Applied Physics and Computational MathematicsBeijingChina
  2. 2.AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations