Advertisement

Mechanical microenvironment as a key cellular regulator in the liver

  • Zhifeng You
  • Lyu Zhou
  • Wenjing Li
  • Chenyu HuangEmail author
  • Yanan DuEmail author
Review Paper

Abstract

Tissue stiffness, shear stress, and interstitial pressure constitute major factors of the liver mechanical microenvironment that play a key regulatory role in controlling cell behavior in the liver and progression of liver diseases. In this review, we focus on the characteristics of the liver mechanical microenvironment and summarize cellular responses to mechanobiological changes during liver pathogenesis, especially in hepatic fibrosis and cirrhosis. A better understanding of the indispensable contribution of mechanical cues to liver homeostasis and pathogenesis is essential for identifying new therapeutic targets for liver diseases such as hepatic fibrosis or cirrhosis.

Keywords

Tissue stiffness Shear stress Interstitial pressure Cell response Hepatic fibrosis 

Notes

Acknowledgements

This work was financially supported in part by the Beijing Natural Science Foundation (Grant 7162210) and National Key R&D Program of China (Grant 2016YFC1000810).

References

  1. 1.
    Bogdanos, D.P., Gao, B., Gershwin, M.E.: Liver immunology. Comp. Physiol. 2, 567–598 (2013)Google Scholar
  2. 2.
    Eipel, C., Abshagen, K., Vollmar, B.: Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J. Gastroenterol. 48, 6046–6057 (2010)CrossRefGoogle Scholar
  3. 3.
    Iwakiri, Y.: Pathophysiology of portal hypertension. Clin. Liver Dis. 2, 281–291 (2014)CrossRefGoogle Scholar
  4. 4.
    Wells, R.G.: Tissue mechanics and fibrosis. Biochim. Biophys. Acta 7, 884–890 (2013)CrossRefGoogle Scholar
  5. 5.
    Handorf, A.M., Zhou, Y., Halanski, M.A., et al.: Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 1, 1–15 (2015)CrossRefGoogle Scholar
  6. 6.
    Wells, R.G.: The role of matrix stiffness in regulating cell behavior. Hepatology 4, 1394–1400 (2008)CrossRefGoogle Scholar
  7. 7.
    Cox, T.R., Erler, J.T.: Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis. Models Mech. 2, 165–178 (2011)CrossRefGoogle Scholar
  8. 8.
    Sporea, I., Sirli, R., Deleanu, A., et al.: Liver stiffness measurements in patients with HBV vs HCV chronic hepatitis: a comparative study. World J. Gastroenterol. 38, 4832–4837 (2010)CrossRefGoogle Scholar
  9. 9.
    Cassinotto, C., Boursier, J., de Ledinghen, V., et al.: Liver stiffness in nonalcoholic fatty liver disease: a comparison of supersonic shear imaging, FibroScan, and ARFI with liver biopsy. Hepatology 6, 1817–1827 (2016)CrossRefGoogle Scholar
  10. 10.
    Gomez-Dominguez, E., Mendoza, J., Garcia-Buey, L., et al.: Transient elastography to assess hepatic fibrosis in primary biliary cirrhosis. Aliment. Pharmacol. Ther. 5, 441–447 (2008)Google Scholar
  11. 11.
    Qi, M., Chen, Y., Zhang, G.Q., et al.: Clinical significance of preoperative liver stiffness measurements in primary HBV-positive hepatocellular carcinoma. Fut. Oncol. 30, 2799–2810 (2017)CrossRefGoogle Scholar
  12. 12.
    Macias, J., Camacho, A., von Wichmann, M.A., et al.: Liver stiffness measurement versus liver biopsy to predict survival and decompensations of cirrhosis among HIV/hepatitis C virus-coinfected patients. AIDS 16, 2541–2549 (2013)CrossRefGoogle Scholar
  13. 13.
    Aykut, U.E., Akyuz, U., Yesil, A., et al.: A comparison of FibroMeter (TM) NAFLD Score, NAFLD fibrosis score, and transient elastography as noninvasive diagnostic tools for hepatic fibrosis in patients with biopsy-proven non-alcoholic fatty liver disease. Scand. J Gastroenterol. 11, 1343–1348 (2014)CrossRefGoogle Scholar
  14. 14.
    Mueller, S., Sandrin, L.: Liver stiffness: a novel parameter for the diagnosis of liver disease. Hepat. Med. Evid. Res. 2, 49–67 (2010)CrossRefGoogle Scholar
  15. 15.
    Sumida, Y., Nakajima, A., Itoh, Y.: Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 2, 475–485 (2014)CrossRefGoogle Scholar
  16. 16.
    Sandrin, L., Fourquet, B., Hasquenoph, J.M., et al.: Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med. Biol. 12, 1705–1713 (2003)CrossRefGoogle Scholar
  17. 17.
    Afdhal, N.H.: Fibroscan (transient elastography) for the measurement of liver fibrosis. Gastroenterol. Hepatol. 9, 605–607 (2012)Google Scholar
  18. 18.
    Castera, L., Forns, X., Alberti, A.: Non-invasive evaluation of liver fibrosis using transient elastography. J. Hepatol. 5, 835–847 (2008)CrossRefGoogle Scholar
  19. 19.
    Castera, L., Foucher, J., Bernard, P., et al.: Pitfalls of liver stiffness measurement: a 5-year prospective study of 13,369 examinations. Hepatology 3, 828–835 (2010)Google Scholar
  20. 20.
    Deng, H., Wang, C., Lai, J., et al.: Noninvasive diagnosis of hepatic steatosis using fat attenuation parameter measured by FibroTouch and a new algorithm in CHB patients. Hepat. Mon. 16, e402639 (2016)CrossRefGoogle Scholar
  21. 21.
    Venkatesh, S.K., Yin, M., Ehman, R.L.: Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J. Magn. Reson. Imaging 3, 544–555 (2013)CrossRefGoogle Scholar
  22. 22.
    Muthupillai, R., Lomas, D.J., Rossman, P.J., et al.: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 5232, 1854–1857 (1995)CrossRefGoogle Scholar
  23. 23.
    Venkatesh, S.K., Yin, M., Ehman, R.L.: Magnetic resonance elastography of liver: clinical applications. J. Comput. Assist. Tomogr. 6, 887–896 (2013)CrossRefGoogle Scholar
  24. 24.
    Chang, W., Lee, J.M., Yoon, J.H., et al.: Liver fibrosis staging with MR elastography: comparison of diagnostic performance between patients with chronic hepatitis B and those with other etiologic causes. Radiology 1, 88–97 (2016)CrossRefGoogle Scholar
  25. 25.
    Kennedy, P., Wagner, M., Castera, L., et al.: Quantitative elastography methods in liver disease: current evidence and future directions. Radiology 3, 738–763 (2018)CrossRefGoogle Scholar
  26. 26.
    Nelissen, J.L., de Graaf, L., Traa, W.A., et al.: A MRI-compatible combined mechanical loading and MR elastography setup to study deformation-induced skeletal muscle damage in rats. PLoS ONE 16, e01698641 (2017)Google Scholar
  27. 27.
    Desai, S.S., Tung, J.C., Zhou, V.X., et al.: Physiological Ranges of Matrix Rigidity Modulate Primary Mouse Hepatocyte Function in Part Through Hepatocyte Nuclear Factor 4 Alpha. Hepatology 1, 261–275 (2016)CrossRefGoogle Scholar
  28. 28.
    Baiocchini, A., Montaldo, C., Conigliaro, A., et al.: Extracellular Matrix molecular remodeling in human liver fibrosis evolution. PLoS ONE 11, e01517363 (2016)CrossRefGoogle Scholar
  29. 29.
    Klaas, M., Kangur, T., Viil, J., et al.: The alterations in the extracellular matrix composition guide the repair of damaged liver tissue. Sci. Rep. 6, 27398 (2016)CrossRefGoogle Scholar
  30. 30.
    Georges, P.C., Hui, J., Gombos, Z., et al.: Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 6, G1147–G1154 (2007)CrossRefGoogle Scholar
  31. 31.
    Kanta, J.: Elastin in the liver. Front. Physiol. 7, 491 (2016)Google Scholar
  32. 32.
    Nakayama, H., Itoh, H., Kunita, S., et al.: Presence of perivenular elastic fibers in nonalcoholic steatohepatitis Fibrosis Stage III. Histol. Histopathol. 4, 407–409 (2008)Google Scholar
  33. 33.
    Yasui, Y., Abe, T., Kurosaki, M., et al: Elastin fiber accumulation in liver correlates with the development of hepatocellular carcinoma. PLoS ONE 11, e0154558 (2016)CrossRefGoogle Scholar
  34. 34.
    Abe, T., Hashiguchi, A., Yamazaki, K., et al.: Quantification of collagen and elastic fibers using whole-slide images of liver biopsy specimens. Pathol. Int. 6, 305–310 (2013)CrossRefGoogle Scholar
  35. 35.
    Liu, X., Liu, R., Hou, F., et al.: Fibronectin expression is critical for liver fibrogenesis in vivo and in vitro. Mol. Med. Rep. 4, 3669–3675 (2016)CrossRefGoogle Scholar
  36. 36.
    Kolacna, L., Bakesova, J., Varga, F., et al.: Biochemical and biophysical aspects of collagen nanostructure in the extracellular matrix. Physiol. Res. 56, S51–S60 (2007)Google Scholar
  37. 37.
    Saneyasu, T., Akhtar, R., Sakai, T.: Molecular cues guiding matrix stiffness in liver fibrosis. Biomed. Res. Int. 2016, 2646212 (2016)Google Scholar
  38. 38.
    Barry-Hamilton, V., Spangler, R., Marshall, D., et al.: Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 9, 1009–1017 (2010)CrossRefGoogle Scholar
  39. 39.
    Gilad, G.M., Kagan, H.M., Gilad, V.H.: Evidence for increased lysyl oxidase, the extracellular matrix-forming enzyme, In Alzheimer’s disease brain. Neurosci. Lett. 3, 210–214 (2005)CrossRefGoogle Scholar
  40. 40.
    Liu, L., You, Z., Yu, H., et al.: Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in liver fibrosis. Nat. Mater. 12, 1252–1261 (2017)CrossRefGoogle Scholar
  41. 41.
    Grenard, P., Bresson-Hadni, S., El Alaoui, S., et al.: Transglutaminase-mediated cross-linking is involved in the stabilization of extracellular matrix in human liver fibrosis. J. Hepatol. 3, 367–375 (2001)CrossRefGoogle Scholar
  42. 42.
    Steppan, J., Bergman, Y., Viegas, K., et al.: Tissue transglutaminase modulates vascular stiffness and function through crosslinking-dependent and crosslinking-independent functions. J. Am. Heart Assoc. 6, e0041612 (2017)CrossRefGoogle Scholar
  43. 43.
    Valero, C., Amaveda, H., Mora, M., et al.: Combined experimental and computational characterization of crosslinked collagen-based hydrogels. PLoS ONE 13, e01958204 (2018)CrossRefGoogle Scholar
  44. 44.
    Discher, D.E., Janmey, P., Wang, Y.L.: Tissue cells feel and respond to the stiffness of their substrate. Science 5751, 1139–1143 (2005)CrossRefGoogle Scholar
  45. 45.
    Natarajan, V., Berglund, E.J., Chen, D.X., et al.: Substrate stiffness regulates primary hepatocyte functions. RSC Adv. 99, 80956–80966 (2015)CrossRefGoogle Scholar
  46. 46.
    Schrader, J., Gordon-Walker, T.T., Aucott, R.L., et al.: Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology 4, 1192–1205 (2011)CrossRefGoogle Scholar
  47. 47.
    Tsuchida, T., Friedman, S.L.: Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 7, 397–411 (2017)CrossRefGoogle Scholar
  48. 48.
    Lee, Y.A., Wallace, M.C., Friedman, S.L.: Pathobiology of liver fibrosis: a translational success story. Gut 5, 830–841 (2015)CrossRefGoogle Scholar
  49. 49.
    Gandhi, C.R.: Hepatic stellate cell activation and pro-fibrogenic signals. J. Hepatol. 5, 1104–1105 (2017)CrossRefGoogle Scholar
  50. 50.
    Olsen, A.L., Bloomer, S.A., Chan, E.P., et al.: Hepatic stellate cells require a stiff environment for myofibroblastic differentiation. Am. J. Physiol. Gastrointest. Liver Physiol. 1, G110–G118 (2011)CrossRefGoogle Scholar
  51. 51.
    Braet, F., Wisse, E.: Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp. Hepatol. 1, 1 (2002)CrossRefGoogle Scholar
  52. 52.
    Ford, A.J., Jain, G., Rajagopalan, P.: Designing a fibrotic microenvironment to investigate changes in human liver sinusoidal endothelial cell function. Acta Biomater. 24, 220–227 (2015)CrossRefGoogle Scholar
  53. 53.
    Kaplowitz, N.: Liver biology and pathobiology. Hepatology 2(Suppl 1), S235–S238 (2006)CrossRefGoogle Scholar
  54. 54.
    Kolios, G., Valatas, V., Kouroumalis, E.: Role of Kupffer cells in the pathogenesis of liver disease. World J. Gastroenterol. 46, 7413–7420 (2006)CrossRefGoogle Scholar
  55. 55.
    Chuang, Y., Chang, H., Chen, Y., et al.: Influence of extracellular matrix stiffness on modulating the phenotype of macrophage. Biophys. J. 3, 516A–516A (2018)CrossRefGoogle Scholar
  56. 56.
    Mcwhorter, F.Y., Davis, C.T., Liu, W.F.: Physical and mechanical regulation of macrophage phenotype and function. Cell. Mol. Life Sci. 7, 1303–1316 (2015)CrossRefGoogle Scholar
  57. 57.
    Patel, N.R., Bole, M., Chen, C., et al.: Cell elasticity determines macrophage function. PLoS ONE 79, e410249 (2012)Google Scholar
  58. 58.
    Janmey, P.A., Miller, R.T.: Mechanisms of mechanical signaling in development and disease. J. Cell Sci. 124(1), 9–18 (2011)CrossRefGoogle Scholar
  59. 59.
    Davies, P.F.: Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75(3), 519–560 (1995)CrossRefGoogle Scholar
  60. 60.
    Poisson, J., Lemoinne, S., Boulanger, C., et al.: Liver sinusoidal endothelial cells: physiology and role in liver diseases. J. Hepatol. 66(1), 212 (2016)CrossRefGoogle Scholar
  61. 61.
    Yamanaka, K., Hatano, E., Narita, M., et al.: Olprinone attenuates excessive shear stress through up-regulation of endothelial nitric oxide synthase in a rat excessive hepatectomy model. Liver Transpl. 17(1), 60–69 (2011)CrossRefGoogle Scholar
  62. 62.
    Fernandez, M.: Molecular pathophysiology of portal hypertension. Hepatology 61(4), 1406–1415 (2015)CrossRefGoogle Scholar
  63. 63.
    Parmar, K.M., Larman, H.B., Dai, G., et al.: Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J. Clin. Invest. 116(1), 49–58 (2006)CrossRefGoogle Scholar
  64. 64.
    Laurie, D.D., Wang, X., Guo, Y.: Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology 48(3), 920–930 (2010)Google Scholar
  65. 65.
    Braet, F., Shleper, M., Paizi, M., et al.: Liver sinusoidal endothelial cell modulation upon resection and shear stress in vitro. Comp. Hepatol. 3(1), 7 (2004)CrossRefGoogle Scholar
  66. 66.
    Du, Y., Li, N., Yang, H., et al.: Mimicking liver sinusoidal structures and functions using a 3d-configured microfluidic chip. Lab Chip 17(5), 782–794 (2017)CrossRefGoogle Scholar
  67. 67.
    Nishii, K., Brodin, E., Renshaw, T., et al.: Shear stress upregulates regeneration-related immediate early genes, in liver progenitors in 3D ECM-like microenvironments. J. Cellul. Physiol. 233, 4272–4281 (2018)CrossRefGoogle Scholar
  68. 68.
    Shah, V., Haddad, F.G., Garciacardena, G., et al.: Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J. Clin. Invest. 100(11), 2923–2930 (1997)CrossRefGoogle Scholar
  69. 69.
    Golse, N., Bucur, P.O., Adam, R., et al.: New paradigms in post-hepatectomy liver failure. J. Gastrointest. Surg. 17(3), 593–605 (2013)CrossRefGoogle Scholar
  70. 70.
    Sugawara, Y., Yamamoto, J., Shimada, K., et al.: Splenectomy in patients with hepatocellular carcinoma and hypersplenism. J. Am. Coll. Surg. 190(4), 446–450 (2000)CrossRefGoogle Scholar
  71. 71.
    Sato, Y., Kobayashi, T., Nakatsuka, H., et al.: Splenic arterial ligation prevents liver injury after a major hepatectomy by a reduction of surplus portal hypertension in hepatocellular carcinoma patients with cirrhosis. Hepatogastroenterology 48(39), 831–835 (2001)Google Scholar
  72. 72.
    Jain, R.K.: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706), 58–62 (2005)CrossRefGoogle Scholar
  73. 73.
    Laine, G.A., Hall, J.T., Laine, S.H., et al.: Transsinusoidal fluid dynamics in canine liver during venous hypertension. Circ. Res. 45(3), 317–323 (1979)CrossRefGoogle Scholar
  74. 74.
    Polacheck, W.J., Charest, J.L., Kamm, R.D.: Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Nat. Acad. Sci. 108, 11115–11120 (2011)CrossRefGoogle Scholar
  75. 75.
    Bedossa, P., Poynard, T.: An algorithm for the grading of activity in chronic hepatitis C. Hepatology 24(2), 289–293 (1996)CrossRefGoogle Scholar
  76. 76.
    Debbaut, C., Vierendeels, J., Casteleyn, C., et al.: Perfusion characteristics of the human hepatic microcirculation based on three-dimensional reconstructions and computational fluid dynamic analysis. J. Biomech. Eng. 134(1), 011003 (2012)CrossRefGoogle Scholar
  77. 77.
    Puhl, G., Schaser, K.D., Vollmar, B., et al.: Noninvasive in vivo analysis of the human hepatic microcirculation using orthogonal polorization spectral imaging. Transplantation 75, 756–761 (2003)CrossRefGoogle Scholar
  78. 78.
    Genzel-Boroviczény, O., Strötgen, J., Harris, A.G., et al.: Orthogonal polarization spectral imaging (OPS): a novel method to measure the microcirculation in term and preterm infants transcutaneously. Pediatr. Res. 51, 386–391 (2002)CrossRefGoogle Scholar
  79. 79.
    Hu, J., Lü, S.Q., Feng, S., et al.: Flow dynamics analyses of pathophysiological liver lobules using porous media theory. Acta. Mech. Sin. 33(4), 823–832 (2017)CrossRefGoogle Scholar
  80. 80.
    Janmey, P.A., Miller, R.T.: Mechanisms of mechanical signaling in development and disease. J. Cell Sci. 124(Pt 1), 9 (2011)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesTsinghua UniversityBeijingChina
  2. 2.School of Life SciencesTsinghua UniversityBeijingChina
  3. 3.Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina

Personalised recommendations