Acta Mechanica Sinica

, Volume 35, Issue 4, pp 799–811 | Cite as

Effects of nano-voids and nano-cracks on the elastic properties of a host medium: XFEM modeling with the level-set function and free surface energy

  • M. R. Kired
  • B. E. Hachi
  • D. Hachi
  • M. HaboussiEmail author
Research Paper


This work deals with the influences of nano-heterogeneities in the form of voids/cavities or cracks on the elastic properties of a host medium. With a relatively large ratio of apparent surface to volume and particularly strong physical interactions with the surrounding medium at nano-scale, nano-heterogeneities can potentially affect the elastic properties of the parent medium (matrix) containing them in a significant manner. This has been reported by various theoretical and experimental studies, some of which are discussed in the present paper. To describe the positive (reinforcement) or negative (degradation) effect of the nano-heterogeneities from the modeling perspective, it is necessary to take into account the energy of interfaces/surfaces between nano-heterogeneities and the matrix, which, because of the relatively large extent of their apparent surface and their strong physical interaction with their neighborhood, can no longer be neglected compared to those of the volume energy. Thus, to account for the effects of interfaces/surfaces in a nanostructured heterogeneous medium, the coherent interface model is considered in the present investigation within a periodic homogenization procedure. In this interface/surface model, the displacement vector is assumed to be continuous across the interface while the stress vector is considered to be discontinuous and satisfying the Laplace–Young equations. To solve these equations coupled to the classical mechanical equilibrium problem, a numerical simulation tool is developed in a two-dimensional (2D) context using the extended finite element method and the level-set functions. The developed numerical tool is then used to carry out a detailed analysis about the effect of nano-heterogeneities on the overall mechanical properties of a medium. The nano-heterogeneities are present in the medium initially as cylindrical cavities (circular in 2D) before being reduced to plane cracks (line in 2D) by successive flattenings.


Interface/surface energy XFEM Level-Set function Periodic homogenization Nano-voids/nano-cavities Nano-cracks Nano-inclusions/nano-heterogeneities 


  1. 1.
    Wang, J.X., Huang, Z.P., Duan, H.L., et al.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 52–82 (2011)CrossRefGoogle Scholar
  2. 2.
    Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)CrossRefGoogle Scholar
  3. 3.
    Kango, S., Kalia, S., Celli, A., et al.: Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—a review. Prog. Polym. Sci. 38, 1232–1261 (2013)CrossRefGoogle Scholar
  4. 4.
    Li, D.L., Zhou, H.S., Honma, I.: Design and synthesis of self-ordered mesoporous nanocomposite through controlled in situ crystallization. Nat. Mater. 3, 65–71 (2004)CrossRefGoogle Scholar
  5. 5.
    Duan, H.L., Wang, J., Karihaloo, B.L., et al.: Nanoporous materials can be made stiffer than non-porous counterparts by surface modification. Acta Mater. 54, 2983–2990 (2006)CrossRefGoogle Scholar
  6. 6.
    Yvonnet, J., Le Quang, H., He, Q.C.: An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites. Comput. Mech. 42, 119–131 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 89, 049901 (2006)CrossRefGoogle Scholar
  8. 8.
    Ren, S.C., Liu, J.T., Gu, S.T., et al.: An XFEM-based numerical procedure for the analysis of poroelastic composites with coherent imperfect interface. Comput. Mater. Sci. 94, 173–181 (2014)CrossRefGoogle Scholar
  9. 9.
    Yao, Y., Chen, S.H., Fang, D.N.: An interface energy density-based theory considering the coherent interface effect in nanomaterials. J. Mech. Phys. Solids 99, 321–337 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sundararajan, S., Bhushan, B., Namazu, T., et al.: Mechanical property measurements of nanoscale structures using an atomic force microscope. Ultramicroscopy 91, 111–118 (2002)CrossRefGoogle Scholar
  11. 11.
    Tan, E.P.S., Lim, C.T.: Mechanical characterization of nanofibers—a review. Compos. Sci. Technol. 66, 1099–1108 (2006)CrossRefGoogle Scholar
  12. 12.
    Quang, H.L., He, Q.C.: Estimation of the effective thermoelastic moduli of fibrous nanocomposites with cylindrically anisotropic phases. Arch. Appl. Mech. 79, 225–248 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Zheng, Z.M., Wang, B.: A prediction model for the effective thermal conductivity of nanofluids considering agglomeration and the radial distribution function of nanoparticles. Acta Mech. Sin. 34, 507–514 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Natarajan, S., Haboussi, M., Manickam, G.: Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite facesheets. Compos. Struct. 113, 197–207 (2014)CrossRefGoogle Scholar
  15. 15.
    Sankar, A., Natarajan, S., Haboussi, M., et al.: Panel flutter characteristics of sandwich plates with CNT reinforced facesheets using an accurate higher-order theory. J. Fluids Struct. 50, 376–391 (2014)CrossRefGoogle Scholar
  16. 16.
    Challab, N., Zighem, F., Faurie, D., et al.: Local stiffness effect on ferromagnetic response of nanostructure arrays in stretchable systems. Phys. Status Solidi-Rapid Res. Lett. (2018). Google Scholar
  17. 17.
    Haboussi, M., Sankar, A., Ganapathi, M.: Nonlinear axisymmetric dynamic buckling of functionally graded graphene reinforced porous nanocomposite spherical caps. Mech. Adv. Mater. Struct. (2018). Google Scholar
  18. 18.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zhu, Y.C., Wei, Y.H., Guo, X.: Gurtin-Murdoch surface elasticity theory revisit: an orbital-free density functional theory perspective. J. Mech. Phys. Solids 109, 178–197 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kachanov, M., Tsukrov, I., Shafiro, B.: Effective moduli of solids with cavities of various shapes. Appl. Mech. Rev. 47, S151–S174 (1994)CrossRefGoogle Scholar
  21. 21.
    Castañeda, P.P., Willis, J.R.: The effect of spatial distribution on the effective behavior of composite materials and cracked media. J. Mech. Phys. Solids 43, 1919–1951 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Orlowsky, B., Saenger, E.H., Gueguen, Y., et al.: Effects of parallel crack distributions on effective elastic properties—a numerical study. Int. J. Fract. 124, L171–L178 (2003)CrossRefGoogle Scholar
  23. 23.
    Kushch, V.I., Sevostianov, I., Mishnaevsky, L.: Effect of crack orientation statistics on effective stiffness of mircocracked solid. Int. J. Solids Struct. 46, 1574–1588 (2009)CrossRefzbMATHGoogle Scholar
  24. 24.
    Wang, X., Zhou, K.: A crack with surface effects in a piezoelectric material. Math. Mech. Solids 22, 3–19 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sukumar, N., Chopp, D.L., Moes, N., et al.: Modeling holes and inclusions by level sets in the extended finite-element method. Comput. Methods Appl. Mech. Eng. 190, 6183–6200 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tran, A.B., Yvonnet, J., He, Q.C., et al.: A multiple level set approach to prevent numerical artefacts in complex microstructures with nearby inclusions within XFEM. Int. J. Numer. Methods Eng. 85, 1436–1459 (2011)CrossRefzbMATHGoogle Scholar
  27. 27.
    Moes, N., Cloirec, M., Cartraud, P., et al.: A computational approach to handle complex microstructure geometries. Comput. Methods Appl. Mech. Eng. 192, 3163–3177 (2003)CrossRefzbMATHGoogle Scholar
  28. 28.
    Yvonnet, J., He, Q.C., Toulemonde, C.: Numerical modeling of the effective conductivities of composites with arbitrarily shaped inclusions and highly conducting interface. Compos. Sci. Technol. 68, 2818–2825 (2008)CrossRefGoogle Scholar
  29. 29.
    Liu, Z.L., Oswald, J., Belytschko, T.: XFEM modeling of ultrasonic wave propagation in polymer matrix particulate/fibrous composites. Wave Motion 50, 389–401 (2013)CrossRefzbMATHGoogle Scholar
  30. 30.
    Zhang, Y.C., Shang, S.P., Liu, S.T.: A novel implementation algorithm of asymptotic homogenization for predicting the effective coefficient of thermal expansion of periodic composite materials. Acta. Mech. Sin. 33, 368–381 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zhuang, X.Y., Wang, Q., Zhu, H.H.: Effective properties of composites with periodic random packing of ellipsoids. Materials 10, 112 (2017)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. R. Kired
    • 1
  • B. E. Hachi
    • 1
  • D. Hachi
    • 2
  • M. Haboussi
    • 3
    Email author
  1. 1.Laboratoire de Développement en Mécanique et Matériaux (LDMM)Université de DjelfaPB 3117 DjelfaAlgeria
  2. 2.Laboratoire d’Automatique Appliquée et Diagnostics Industriels (LAADI)Université de DjelfaPB 3117 DjelfaAlgeria
  3. 3.Laboratoire des Sciences des Procédés et des Matériaux (LSPM)Université Paris 13, UPR 3407 CNRS, Sorbonne-Paris-CitéVilletaneuseFrance

Personalised recommendations