Acta Mechanica Sinica

, Volume 35, Issue 1, pp 212–227 | Cite as

Numerical solutions for cracks in an elastic half-plane

  • N. R. F. Elfakhakhre
  • N. M. A. Nik LongEmail author
  • Z. K. Eshkuvatov
Research Paper


The behavior of the stress intensity factor at the tips of cracks subjected to uniaxial tension \(\sigma ^{\infty }_{x}=p\) with traction-free boundary condition in half-plane elasticity is investigated. The problem is formulated into singular integral equations with the distribution dislocation function as unknown. In the formulation, we make used of a modified complex potential. Based on the appropriate quadrature formulas together with a suitable choice of collocation points, the singular integral equations are reduced to a system of linear equations for the unknown coefficients. Numerical examples show that the values of the stress intensity factor are influenced by the distance from the cracks to the boundary of the half-plane and the configuration of the cracks.


Elastic half-plane Multiple cracks Singular integral equation Sine-shaped crack 



The author would like to thank University Putra Malaysia for Putra Grant (9442300).


  1. 1.
    Panasyuk, V.V., Savruk, M.P., Datsyshyn, A.P.: A general method of solution of two-dimensional problems in the theory of cracks. Eng. Fract. Mech. 9, 481–497 (1977)CrossRefGoogle Scholar
  2. 2.
    Denda, M., Dong, Y.F.: Complex variable approach to the BEM for multiple crack problems. Comput. Methods Appl. Mech. Eng. 141, 247–264 (1997)CrossRefzbMATHGoogle Scholar
  3. 3.
    Zozulya, V.V.: Regularization of hypersingular integrals in 3-D fracture mechanics: trigular BE, and piecewise-constant and piecewise-linear approximations. Eng. Anal. Bound. Elem. 34, 105–113 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Helsing, J.: A fast and stable solver for singular integral equations on piecewise smooth curved. SIAM J. Sci. Comput. 33, 153–174 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Nik Long, N.M.A., Eshkuvatov, Z.K.: Hypersingular integral equation for multiple curved cracks problem in plane elasticity. Int. J. Solids Struct. 46(13), 2611–2617 (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Rafar, R.A., Nik Long, N.M.A., Senu, N., et al.: Stress intensity factor for multiple inclined or curved cracks problem in circular positions in plane elasticity. ZAMM J. Appl. Math. Mech. 97, 1482–1494 (2017)MathSciNetGoogle Scholar
  7. 7.
    Aridi, M.R., Nik Long, N.M.A., Eshkuvatov, Z.K.: Stress intensity factor for the interaction between a straight crack and a curved crack in plane elasticity. Acta Mech. Solida Sin. 29, 407–415 (2016)CrossRefGoogle Scholar
  8. 8.
    Xing, J.: SIF-based fracture criterion for interface cracks. Acta Mech. Sin. 32, 491–496 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Honggang, J., Yufeng, N.: Thermoelastic analysis of multiple defects with the extended finite element method. Acta Mech. Sin. 32, 1123–1137 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ji, X., Zhu, F., He, P.F.: Determination of stress intensity factor with direct stress approach using finite element analysis. Acta Mech. Sin. 33, 879–885 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Wang, X., Ang, W.T., Fan, H.: Hypersingular integral and integro-differential micromechanical models for an imperfect interface between a thin orthotropic layer and orthotropic half-space under inplane elastostatic deformations. Eng. Anal. Bound. Elem. 52, 32–43 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chen, Y.Z.: Various integral equations for a single crack problem of elastic half-plane. Eng. Fract. Mech. 49(6), 849–859 (1994)CrossRefGoogle Scholar
  13. 13.
    Li, Y.N., Hong, A.P., Bazant, Z.P.: Initiation of parallel cracks from surface of elastic half-plane. Int. J. Fract. 69, 357–369 (1995)CrossRefGoogle Scholar
  14. 14.
    Nik Long, N.M.A., Yaghobifar, M., Eshkuvatov, Z.K.: Stress analysis in a half plane elasticity. Int. J. Appl. Math. Stat. 20, 79–85 (2011)MathSciNetGoogle Scholar
  15. 15.
    Kuo, C.H.: Contact stress analysis of an elastic half-plane containing multiple inclusions. Int. J. Solids Struct. 45, 4562–4573 (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Alexeyeva, L.A., Sarsenov, B.T.: Dynamics of elastic half-plane when resetting the vertical stress at the crack. IJPAM 107(3), 517–528 (2016)Google Scholar
  17. 17.
    Theocaris, P.S., Ioakimidis, N.I.: The V-notched elastic half-plane problem. Acta Mech. 32, 125–140 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Chen, Y.Z.: Evaluation of the T-stress for multiple cracks in an elastic half-plane using singular integral equation and Green’s function method. Appl. Math. Comput. 228, 17–30 (2014)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Chen, Y.Z., Hasebe, N.: Solution of multiple-edge cracks problem of elastic half-plane by using singular integral equation approach. Commun. Numer. Methods Eng. 11, 607–617 (1995)CrossRefzbMATHGoogle Scholar
  20. 20.
    Savruk, M.P., Kazberuk, A.: A plane periodic boundary-value problem of elasticity theory for half-plane with curvilinear edge. Mater. Sci. 44(4), 461–470 (2008)CrossRefGoogle Scholar
  21. 21.
    Ioakimidis, N.I., Theocaris, P.S.: A system of curvilinear cracks in an isotropic half-plane. Int. J. Fract. 15(4), 299–309 (1979)MathSciNetGoogle Scholar
  22. 22.
    Panasyuk, V.V., Datsyshyn, O.P., Marchenko, H.P.: Contact problem for a half-plane with cracks subjected to the action of a rigid punch on its boundary. Mater. Sci. 31(6), 667–678 (1995)CrossRefGoogle Scholar
  23. 23.
    Panasyuk, V.V., Datsyshyn, O.P., Marchenko, H.P.: Stress state of half-plane with cracks under rigid punch action. Int. J. Fract. 101, 347–363 (2000)CrossRefGoogle Scholar
  24. 24.
    Monfared, M.M., Ayatollahi, M., Mousavi, S.M.: The mixed-mode analysis of a functionally graded orthotropic half-plane weakened by multiple curved cracks. Arch. Appl. Mech. 86, 713–728 (2016)CrossRefGoogle Scholar
  25. 25.
    Parton, V.Z., Perlin, P.I.: New Integral Equation in Elasticity. Mir, Moscow (1982)zbMATHGoogle Scholar
  26. 26.
    Chen, Y.Z.: Stress intensity factors for curved and kinked cracks in plane extension. Theor. Appl. Fract. Mech. 31, 223–232 (1999)CrossRefGoogle Scholar
  27. 27.
    Mayrhofer, K., Fischer, F.D.: A Singular integral equation solution for the linear elastic crack opening displacement of an arbitrarily shaped plane crack: Part II regular integral solutions. FFEMS 20, 1497–1505 (1997)Google Scholar
  28. 28.
    Cheung, Y.K., Chen, Y.Z.: New integral equation for plane elasticity crack problems. Theor. Appl. Fract. Mech. 7, 177–184 (1987)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Chen, Y.Z., Cheung, Y.K.: New integral equation approach for the crack problem in elastic half-plane. Int. J. Fract. 46, 57–69 (1990)CrossRefGoogle Scholar
  30. 30.
    Chen, Y.Z., Lin, X.Y., Wang, X.Z.: Numerical solution for curved crack problem in elastic half-plane using hypersingular integral equation. Philos. Mag. 89(26), 2239–2253 (2009)CrossRefGoogle Scholar
  31. 31.
    Mogilevskaya, S.G.: Complex hypersingular integral equation for the piece-wise homogeneous half-plane with cracks. Int. J. Fract. 102, 177–204 (2000)CrossRefGoogle Scholar
  32. 32.
    Dejoie, A., Mogilevskaya, S.G., Crouch, S.L.: A boundary integral method for multiple circular holes in an elastic half plane. Eng. Anal. Bound. Elem. 30(26), 450–464 (2006)CrossRefzbMATHGoogle Scholar
  33. 33.
    Kratochvil, J., Becker, W.: Asymptotic analysis of stresses in an isotropic linear elastic plane or half-plane weakened by a finite number of holes. Arch. Appl. Mech. 82, 743–754 (2012)CrossRefzbMATHGoogle Scholar
  34. 34.
    Datsyshin, A.P., Marchenko, G.P.: An edge curvilinear crack in an elastic half-plane. Fiz. Mekh. Mat. 21(1), 67–71 (1985)Google Scholar
  35. 35.
    Jin, X., Keer, L.M.: Solution of multiple edge cracks in an elastic half plane. Int. J. Fract. 137, 121–137 (2006)CrossRefzbMATHGoogle Scholar
  36. 36.
    Hejazi, A.A., Ayatollahi, M., Bagheri, R., et al.: Dislocation technique to obtain the dynamic stress intensity factors for multiple cracks in a half-plane under impact load. Arch. Appl. Mech. 84, 95–107 (2014)CrossRefzbMATHGoogle Scholar
  37. 37.
    Hallback, M.W., Tofique, N.: Development of a distributed dislocation dipole technique for the analysis of multiple straight, kinked and branched cracks in an elastic half plane. Int. J. Solids Struct. 51, 2878–2892 (2014)CrossRefGoogle Scholar
  38. 38.
    Erdogan, F., Gupt, G.D., Cook, T.S.: Numerical solution of singular integral equations. In: Sih, G.C. (ed.) Mechanics of Fracture, vol. 1, pp. 368–425. Leyden Noordhoff, Berlin (1973)Google Scholar
  39. 39.
    Muskhelishvili, N.I.: Some Basic Problems of Mathematical Theory of Elasticity. Noordhoff International Publishing, Leyden (1953)zbMATHGoogle Scholar
  40. 40.
    Chen, Y.Z., Hasebe, N., Lee, K.Y.: Multiple Crack Problems in Elasticity. WIT Press, Southampton (2003)zbMATHGoogle Scholar
  41. 41.
    Lam, K.Y., Phua, S.P.: Multiple crack interaction and its effect on stress intensity factor. Eng. Fract. Mech. 40, 585–592 (1991)CrossRefGoogle Scholar
  42. 42.
    Sih, G.C.: Boundary problems for longitudinal shear cracks. In: Proceedings of 2nd conference on theoretical and applied mechanics, 2, 117–130 (1964)Google Scholar
  43. 43.
    Elfakhakhre, N.R.F., Nik Long, N.M.A., Eshkuvatov, Z.K.: Stress intensity factor for an elastic half plane weakened by multiple curved cracks. Appl. Math. Model. 60, 540–551 (2018)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Chen, Y.Z.: Solution of integral equation in curve crack problem by using curve length coordinate. Eng. Anal. Bound. Elem. 28, 989–994 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Chen, Y.Z.: Singular integral equation method for the solution of multiple curved crack problems. Int. J. Solids Struct. 41, 3505–3519 (2004)CrossRefzbMATHGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • N. R. F. Elfakhakhre
    • 1
  • N. M. A. Nik Long
    • 1
    • 2
    Email author
  • Z. K. Eshkuvatov
    • 2
    • 3
  1. 1.Mathematics Department, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Institute for Mathematical ResearchUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Faculty of Science and TechnologyUniversiti Sains Islam MalaysiaNilaiMalaysia

Personalised recommendations