Acta Mechanica Sinica

, Volume 35, Issue 1, pp 70–77 | Cite as

Dual-level stress plateaus in honeycombs subjected to impact loading: perspectives from bucklewaves, buckling and cell-wall progressive folding

  • Lang Li
  • Zhenyu Zhao
  • Rui Zhang
  • Bin HanEmail author
  • Qiancheng Zhang
  • Tian Jian LuEmail author
Research Paper


Dual-level stress plateaus (i.e., relatively short peak stress plateaus, followed by prolonged crushing stress plateaus) in metallic hexagonal honeycombs subjected to out-of-plane impact loading are characterized using a combined numerical and analytical study, with the influence of the strain-rate sensitivity of the honeycomb parent material accounted for. The predictions are validated against existing experimental measurements, and good agreement is achieved. It is demonstrated that honeycombs exhibit dual-level stress plateaus when bucklewaves are initiated and propagate in cell walls, followed by buckling and progressive folding of the cell walls. The abrupt stress drop from peak to crushing plateau in the compressive stress versus strain curve can be explained in a way similar to the quasi-static buckling of a clamped plate. The duration of the peak stress plateau is more evident for strain-rate insensitive honeycombs.


Honeycomb Impact loading Dual-level stress Strain-rate sensitivity 



This work was supported by the National Natural Science Foundation of China (Grants 11472209 and 11472208), the China Postdoctoral Science Foundation (Grant 2016M600782), the Postdoctoral Scientific Research Project of Shaanxi Province (Grant 2016BSHYDZZ18), the Zhejiang Provincial Natural Science Foundation of China (Grant LGG18A020001), the Fundamental Research Funds for Xi’an Jiaotong University (Grant xjj2015102), the Jiangsu Province Key Laboratory of High-end Structural Materials (Grant hsm1305), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant 2018JQ1078).


  1. 1.
    Wierzbicki, T.: Crushing analysis of metal honeycombs. Int. J. Impact Eng. 1, 157–174 (1983)CrossRefGoogle Scholar
  2. 2.
    Zhang, J., Ashby, M.F.: The out-of-plane properties of honeycombs. Int. J. Mech. Sci. 34, 475–489 (1992)CrossRefGoogle Scholar
  3. 3.
    Zhang, Q.C., Yang, X.H., Li, P., et al.: Bioinspired engineering of honeycomb structure—using nature to inspire human innovation. Prog. Mater. Sci. 74, 332–400 (2015)CrossRefGoogle Scholar
  4. 4.
    Côté, F., Deshpande, V.S., Fleck, N.A., et al.: The out-of-plane compressive behavior of metallic honeycombs. Mater. Sci. Eng., A 380, 272–280 (2004)CrossRefGoogle Scholar
  5. 5.
    Wilbert, A., Jang, W.Y., Kyriakides, S., et al.: Buckling and progressive crushing of laterally loaded honeycomb. Int. J. Solids Struct. 48, 803–816 (2011)CrossRefzbMATHGoogle Scholar
  6. 6.
    Enboa, W., Jiang, W.S.: Axial crush of metallic honeycombs. Int. J. Impact Eng. 19, 439–456 (1997)CrossRefGoogle Scholar
  7. 7.
    Hu, L.L., He, X.L., Wu, G.P., et al.: Dynamic crushing of the circular-celled honeycombs under out-of-plane impact. Int. J. Impact Eng. 75, 150–161 (2015)CrossRefGoogle Scholar
  8. 8.
    Xu, S.Q., Beynon, J.H., Ruan, D., et al.: Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Compos. Struct. 94, 2326–2336 (2012)CrossRefGoogle Scholar
  9. 9.
    Sun, D., Zhang, W., Wei, Y.: Mean out-of-plane dynamic plateau stresses of hexagonal honeycomb cores under impact loadings. Compos. Struct. 92, 2609–2621 (2010)CrossRefGoogle Scholar
  10. 10.
    Hou, X.H., Deng, Z.C., Zhang, K.: Dynamic crushing strength analysis of auxetic honeycombs. Acta Mech. Solida Sin. 29, 490–501 (2016)CrossRefGoogle Scholar
  11. 11.
    Calladine, C.R., English, R.W.: Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure. Int. J. Mech. Sci. 26, 689–701 (1984)CrossRefGoogle Scholar
  12. 12.
    Harrigan, J.J., Reid, S.R., Peng, C.: Inertia effects in impact energy absorbing materials and structures. Int. J. Impact Eng. 22, 955–979 (1999)CrossRefGoogle Scholar
  13. 13.
    Ferri, E., Antinucci, E., He, M.Y., et al.: Dynamic buckling of impulsively loaded prismatic cores. J. Mech. Mater. Struct. 1, 1345–1365 (2006)CrossRefGoogle Scholar
  14. 14.
    Tilbrook, M.T., Radford, D.D., Deshpande, V.S., et al.: Dynamic crushing of sandwich panels with prismatic lattice cores. Int. J. Solids Struct. 44, 6101–6123 (2007)CrossRefGoogle Scholar
  15. 15.
    Radford, D.D., Mcshane, G.J., Deshpande, V.S., et al.: Dynamic compressive response of stainless-steel square honeycombs. ASME J. Appl. Mech. 74, 658–667 (2007)CrossRefGoogle Scholar
  16. 16.
    Ferri, E., Deshpande, V.S., Evans, A.G.: The dynamic strength of a representative double layer prismatic core: a combined experimental, numerical, and analytical assessment. ASME J. Appl. Mech. 77, 061011 (2010)CrossRefGoogle Scholar
  17. 17.
    Vaughn, D.G., Hutchinson, J.W.: Bucklewaves. Eur. J. Mech. A: Solids 25, 1–12 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Vaughn, D.G., Canning, J.M., Hutchinson, J.W.: Coupled plastic wave propagation and column buckling. ASME J. Appl. Mech. 72, 1–8 (2005)CrossRefzbMATHGoogle Scholar
  19. 19.
    Zhang, K., Deng, Z.C., Xu, X.J., et al.: Symplectic analysis for wave propagation of hierarchical honeycomb structures. Acta Mech. Solida Sin. 28, 150–161 (2015)Google Scholar
  20. 20.
    Hooputra, H., Gese, H., Dell, H., et al.: A comprehensive failure model for crashworthiness simulation of aluminum extrusions. Int. J. Crashworthiness 9, 449–464 (2004)CrossRefGoogle Scholar
  21. 21.
    Cowper, G.R., Symonds, P.S.: Strain-hardening and strain-rate effects in the impact loading of cantilever beams. Division of Applied Mathematics Report No. 28, Brown University, Providence, RI, USA (1957)Google Scholar
  22. 22.
    Han, B., Qin, K.K., Yu, B., et al.: Honeycomb-corrugation hybrid as a novel sandwich core for significantly enhanced compressive performance. Mater. Des. 93, 271–282 (2016)CrossRefGoogle Scholar
  23. 23.
    Han, B., Wang, W.B., Zhang, Z.J., et al.: Performance enhancement of sandwich panels with honeycomb-corrugation hybrid core. Theor. Appl. Mech. Lett. 6, 54–59 (2016)CrossRefGoogle Scholar
  24. 24.
    Tao, Y., Chen, M., Pei, Y., et al.: Strain-rate effect on mechanical behavior of metallic honeycombs under out-of-plane dynamic compression. ASME J. Appl. Mech. 82, 021007 (2015)CrossRefGoogle Scholar
  25. 25.
    Reid, S.R., Peng, C.: Dynamic uniaxial crushing of wood. Int. J. Impact Eng. 19, 531–570 (1997)CrossRefGoogle Scholar
  26. 26.
    Karagiozova, D., Alves, M.: On the dynamic compression of cellular materials with local structural softening. Int. J. Impact Eng. 108, 153–170 (2017)CrossRefGoogle Scholar
  27. 27.
    Tao, Y., Chen, M., Pei, Y., et al.: Strain-rate effect on the out-of-plane dynamic compressive behavior of metallic honeycombs: experiment and theory. Compos. Struct. 132, 644–651 (2015)CrossRefGoogle Scholar
  28. 28.
    Hou, B., Zhao, H., Pattofatto, S., et al.: Inertia effects on the progressive crushing of aluminum honeycombs under impact loading. Int. J. Solids and Struct. 49, 2754–2762 (2012)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Strength and Vibration of Mechanical StructuresXi’an Jiaotong UniversityXi’anChina
  2. 2.State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjingChina
  3. 3.MOE Key Laboratory for Multifunctional Materials and StructuresXi’an Jiaotong UniversityXi’anChina
  4. 4.School of Mechanical EngineeringXi’an Jiaotong UniversityXi’anChina
  5. 5.School of EngineeringBrown UniversityProvidenceUSA
  6. 6.Research Institute of Xi’an Jiaotong UniversityZhejiangChina

Personalised recommendations