Advertisement

A novel static shape-adjustment technique for planar phased-array satellite antennas

  • Ji-Yang Zhou
  • Guang-Yu Lu
  • Guo-Ping Cai
  • Guang-Qiang Fang
  • Liang-Liang Lv
  • Jun-Wei Shi
Research Paper
  • 51 Downloads

Abstract

Planar phased-array satellite antennas deform when subjected to external disturbances such as thermal gradients or slewing maneuvers. Such distortion can degrade the coherence of the antenna and must therefore be eliminated to maintain performance. To support planar phased-array satellite antennas, a truss with diagonal cables is often applied, generally pretensioned to improve the stiffness of the antenna and maintain the integrity of the structure. A new technique is proposed herein, using the diagonal cables as the actuators for static shape adjustment of the planar phased-array satellite antenna. In this technique, the diagonal cables are not pretensioned; instead, they are slack when the deformation of the antenna is small. When using this technique, there is no need to add redundant control devices, improving the reliability and reducing the mass of the antenna. The finite element method is used to establish a structural model for the satellite antenna, then a method is introduced to select proper diagonal cables and determine the corresponding forces. Numerical simulations of a simplified two-bay satellite antenna are first carried out to validate the proposed technique. Then, a simplified 18-bay antenna is also studied, because spaceborne satellite antennas have inevitably tended to be large in recent years. The numerical simulation results show that the proposed technique can be effectively used to adjust the static shape of planar phased-array satellite antennas, achieving high precision.

Keywords

Planar phased-array satellite antenna Static shape adjustment Diagonal cables Active control 

Notes

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant 11772187), the research project of the Key Laboratory of Infrared System Detection and Imaging Technology of the Chinese Academy of Sciences (Grant CASIR201702), and the Natural Science Foundation of Shanghai (Grant 16ZR1436200).

References

  1. 1.
    Zhang, S.X., Du, J.L., Li, P.: Design of shaped offset cable mesh reflector antennas considering structural flexible property. IET Microwaves Antennas Propag. 11, 1024–1030 (2017)CrossRefGoogle Scholar
  2. 2.
    Liu, R.W., Guo, H.W., Liu, R.Q., et al.: Shape accuracy optimization for cable-rib tension deployable antenna structure with tensioned cables. Acta Astronaut. 140, 66–77 (2017)CrossRefGoogle Scholar
  3. 3.
    Wang, L., Li, D.X.: Simple technique for form-finding and tension determining of cable-network antenna reflectors. J. Spacecr. Rockets 50, 479–481 (2013)CrossRefGoogle Scholar
  4. 4.
    Meguro, A., Shintate, K., Usui, M., et al.: In-orbit deployment characteristics of large deployable antenna reflector onboard engineering test satellite VIII. Acta Astronaut. 65, 1306–1316 (2009)CrossRefGoogle Scholar
  5. 5.
    Zhang, Y.Q., Li, N., Yang, G.G., et al.: Dynamic analysis of the deployment for mesh reflector deployable antennas with the cable-net structure. Acta Astronaut. 131, 182–189 (2017)CrossRefGoogle Scholar
  6. 6.
    Zhang, Y.Q., Duan, B.Y., Li, T.J.: Integrated design of deployment trajectory and control system for deployable space antennas. J. Mech. Eng. 47, 21–28 (2011)CrossRefGoogle Scholar
  7. 7.
    William, H., John, A.: Engineering Electromagnetics, 8th edn. McGraw-Hill, New York (2012)Google Scholar
  8. 8.
    Abid, M.: Spacecraft Sensors, pp. 230–238. Wiley, West Sussex (2005)CrossRefGoogle Scholar
  9. 9.
    Mailloux, R.: Phased Array Antenna Handbook, 2nd edn, pp. 1–62. Artech House, Norwood (2005)Google Scholar
  10. 10.
    Fenn, A.: Adaptive Antennas and Phased Arrays for Radar and Communications, pp. 191–214. Artech House, Norwood (2008)Google Scholar
  11. 11.
    Ossowska, A., Kim, J., Wiesbeck, W.: Influence of mechanical antenna distortion on the performance of the HRWS SAR system. In: Proceeding of International Geoscience and Remote Sensing Symposium (IGARSS), July 23–28, Barcelona, Spain, IEEE, pp. 2152–2155 (2007)Google Scholar
  12. 12.
    Hu, K.Y., Wang, K., Wu, P.Z., et al.: Analysis for electrical performance of antenna considering gravity deformation based on different band and elevation angle. Adv. Mater. Mech. 863, 266–272 (2017)Google Scholar
  13. 13.
    Takahashi, T., Nakamoto, N., Ohtsuka, M., et al.: On-board calibration methods for mechanical distortions of satellite phased array antennas. IEEE Trans. Antennas Propag. 60, 1362–1372 (2012)CrossRefGoogle Scholar
  14. 14.
    Peterman, D., James, K., Glavac, V.: Distortion measurement and compensation in a synthetic aperture radar phased-array antenna. In: 14th International Symposium on Antenna Technology and Applied Electromagnetics & the American Electromagnetics Conference (ANTEM-AMEREM), July 5–8, Ottawa, ON, IEEE, pp. 1–5 (2010)Google Scholar
  15. 15.
    Mcwatters, D., Freedman, A., Michel, T., et al.: Antenna auto-calibration and metrology approach for the AFRL/JPL space based radar. In: Proceedings of Radar Conference, April 26–29, Philadelphia, PA, United States, IEEE, pp. 21–26 (2004)Google Scholar
  16. 16.
    Greschik, G., Mikulas, M.M., Helms, R.G., et al.: Strip antenna figure errors due to support truss member length imperfections. In: 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, April 19–22. Palm Springs, California, AIAA (2004)Google Scholar
  17. 17.
    Song, G.B., Kelly, B., Agrawal, B.N.: Active position control of a shape memory alloy wire actuated composite beam. Smart Mater. Struct. 9, 711–716 (2000)CrossRefGoogle Scholar
  18. 18.
    Zhang, J.P., Li, J.X.: Light-weighting technologies for the active phased array of space-borne radar. In: The China Antenna Annual Conference, October 14–16, Chengdu, China. Beijing: Electronic Industry Press, pp. 709–713 (2009)Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ji-Yang Zhou
    • 1
  • Guang-Yu Lu
    • 1
  • Guo-Ping Cai
    • 1
  • Guang-Qiang Fang
    • 2
  • Liang-Liang Lv
    • 2
  • Jun-Wei Shi
    • 2
  1. 1.Department of Engineering Mechanics, State Key Laboratory of Ocean EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Institute of Aerospace System EngineeringShanghaiChina

Personalised recommendations