Advertisement

Acta Mechanica Sinica

, Volume 34, Issue 5, pp 983–993 | Cite as

Influence of tidal-volume setting, emphysema and ARDS on human alveolar sacs mechanics

  • P. Aghasafari
  • R. Pidaparti
Research Paper
  • 52 Downloads

Abstract

Mechanical ventilation (MV) devices help patients with lung disorders to breathe. Improper setting for MV devices lead to further lung injuries. Therefore, investigating influence of ventilator device settings on healthy and diseased alveolar sacs mechanics could prevent injuries while in use. To this aim, three-dimensional (3D) models for healthy and emphysematous alveolar sacs with and without acute respiratory distress syndrome (ARDS) were developed, and computational fluid dynamics (CFD) analysis and fluid–solid interaction (FSI) approach were employed to study the influence of alveolar sacs wall motion, tidal volume (TV) setting and disease on alveolar sac mechanics. The recirculation region was only monitored in alveolar sacs with rigid wall. Observations demonstrated an increase in compliance during air inhalation into the emphysematous alveolar sacs. Induced air penetrated deeper into healthy alveolar sacs compared to the emphysematous model and recommended TV for chronic obstructive pulmonary disease (COPD) increased applied strain, stress and wall shear stress (WSS) on emphysematous alveolar sacs. In addition, recommended TVs for patients with ARDS decreased strain and stress, but did not influence applied WSS significantly. In general, increasing TV raised stress and strain level and led to deeper air penetration into the alveolar sacs. Afterwards, lower TV decreased strain, stress and WSS for patients who had both ARDS and emphysema. This study can provide invaluable insights about diseased alveolar sacs mechanics and evaluate importance of ventilator devices setting in different disease conditions.

Keywords

Alveolar sacs MV TV Emphysema ARDS 

Notes

Acknowledgements

This study was supported by the National Science Foundation of USA (Grant CMMI-1430379).

References

  1. 1.
    Athanazio, R.: Airway disease: similarities and differences between asthma, COPD and bronchiectasis. Clinics 67, 1335–1343 (2012).  https://doi.org/10.6061/clinics/2012(11)19 CrossRefGoogle Scholar
  2. 2.
    Aghasafari, P., Ibrahim, I.B., Pidaparti, R.M.: Investigation of the effects of emphysema and influenza on alveolar sacs closure through CFD simulation. J. Biomed. Sci. Eng. 9, 287 (2016).  https://doi.org/10.4236/jbise.2016.96022 CrossRefGoogle Scholar
  3. 3.
    Shorofsky, M., Jayaraman, D., Lellouche, F., et al.: Mechanical ventilation with high tidal volume and associated mortality in the cardiac intensive care unit. Acute Cardiac Care 16, 9–14 (2014).  https://doi.org/10.3109/17482941.2013.869345 CrossRefGoogle Scholar
  4. 4.
    Reddy, R.M., Guntupalli, K.K.: Review of ventilatory techniques to optimize mechanical ventilation in acute exacerbation of chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis. 2, 441 (2007)Google Scholar
  5. 5.
    Needham, D.M., Yang, T., Dinglas, V.D., et al.: Timing of low tidal volume ventilation and intensive care unit mortality in acute respiratory distress syndrome. A prospective cohort study. Am. J. Respir. Crit. Care Med. 191, 177–185 (2015).  https://doi.org/10.1164/rccm.201409-1598OC CrossRefGoogle Scholar
  6. 6.
    Perinel-Ragey, S., Baboi, L., Gurin, C.: Variability of tidal volume in patient-triggered mechanical ventilation in ARDS. Respir. Care 62, 1437–1446 (2017).  https://doi.org/10.4187/respcare.05415 CrossRefGoogle Scholar
  7. 7.
    Cinkotai, F.: Fluid flow in a model alveolar sac. J. Appl. Physiol. 37, 249–251 (1974)CrossRefGoogle Scholar
  8. 8.
    Tippe, A., Tsuda, A.: Recirculating flow in an expanding alveolar model: experimental evidence of flow-induced mixing of aerosols in the pulmonary acinus. J. Aerosol Sci. 31, 979–986 (2000).  https://doi.org/10.1016/S0021-8502(99)00572-8 CrossRefGoogle Scholar
  9. 9.
    Berg, E.J., Weisman, J.L., Oldham, M.J., et al.: Flow field analysis in a compliant acinus replica model using particle image velocimetry (PIV). J. Biomech. 43, 1039–1047 (2010).  https://doi.org/10.1016/j.jbiomech.2009.12.019 CrossRefGoogle Scholar
  10. 10.
    Sznitman, J.: Respiratory microflows in the pulmonary acinus. J. Biomech. 46, 284–298 (2013).  https://doi.org/10.1016/j.jbiomech.2012.10.028 CrossRefGoogle Scholar
  11. 11.
    Berg, E.J., Robinson, R.J.: Stereoscopic particle image velocimetry analysis of healthy and emphysemic alveolar sac models. J. Biomech. Eng. 133, 061004 (2011).  https://doi.org/10.1115/1.4004251 CrossRefGoogle Scholar
  12. 12.
    Oakes, J.M., Day, S., Weinstein, S.J., et al.: Flow field analysis in expanding healthy and emphysematous alveolar models using particle image velocimetry. J. Biomech. Eng. 132, 021008 (2010).  https://doi.org/10.1115/1.4000870 CrossRefGoogle Scholar
  13. 13.
    Oakes, J.M., Hofemeier, P., Vignon-Clementel, I.E., et al.: Aerosols in healthy and emphysematous in silico pulmonary acinar rat models. J. Biomech. 49, 2213–2220 (2015).  https://doi.org/10.1016/j.jbiomech.2015.11.026 CrossRefGoogle Scholar
  14. 14.
    Van Ertbruggen, C., Corieri, P., Theunissen, R., et al.: Validation of CFD predictions of flow in a 3D alveolated bend with experimental data. J. Biomech. 41, 399–405 (2008).  https://doi.org/10.1016/j.jbiomech.2007.08.013 CrossRefGoogle Scholar
  15. 15.
    Ma, B., Ruwet, V., Corieri, P., et al.: CFD simulation and experimental validation of fluid flow and particle transport in a model of alveolated airways. J. Aerosol Sci. 40, 403–414 (2009).  https://doi.org/10.1016/j.jaerosci.2009.01.002 CrossRefGoogle Scholar
  16. 16.
    Chhabra, S., Prasad, A.K.: Flow and particle dispersion in a pulmonary alveolus part I: velocity measurements and convective particle transport. J. Biomech. Eng. 132, 051009 (2010).  https://doi.org/10.1115/1.4001112 CrossRefGoogle Scholar
  17. 17.
    Chhabra, S., Prasad, A.K.: Flow and particle dispersion in a pulmonary alveolus part II: effect of gravity on particle transport. J. Biomech. Eng. 132, 051010 (2010).  https://doi.org/10.1115/1.4001113 CrossRefGoogle Scholar
  18. 18.
    Fishler, R., Mulligan, M.K., Sznitman, J.: Acinus-on-a-chip: a microfluidic platform for pulmonary acinar flows. J. Biomech. 46, 2817–2823 (2013).  https://doi.org/10.1016/j.jbiomech.2013.08.020 CrossRefGoogle Scholar
  19. 19.
    Tavana, H., Kuo, C.H., Lee, Q.Y., et al.: Dynamics of liquid plugs of buffer and surfactant solutions in a micro-engineered pulmonary airway model. Langmuir 26, 3744–3752 (2009).  https://doi.org/10.1021/la903038a CrossRefGoogle Scholar
  20. 20.
    Huo, B., Fu, R.R.: Recent advances in theoretical models of respiratory mechanics. Acta. Mech. Sin. 28, 1–7 (2012).  https://doi.org/10.1007/s10409-012-0024-8 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Casarin, S., Aletti, F., Baselli, G., et al.: Optimal flow conditions of a tracheobronchial model to reengineer lung structures. Acta. Mech. Sin. 33, 284–294 (2017).  https://doi.org/10.1007/s10409-017-0644-0 CrossRefzbMATHGoogle Scholar
  22. 22.
    Federspiel, W.J., Fredberg, J.J.: Axial dispersion in respiratory bronchioles and alveolar ducts. J. Appl. Physiol. 64, 2614–2621 (1988)CrossRefGoogle Scholar
  23. 23.
    Tsuda, A., Federspiel, W.J., Grant, P.A., et al.: Axial dispersion of inert species in alveolated channels. Chem. Eng. Sci. 46, 1419–1426 (1991)CrossRefGoogle Scholar
  24. 24.
    Tawhai, M.H., Lin, C.L.: Image-based modeling of lung structure and function. J. Magn. Reson. Imaging 32, 1421–1431 (2010).  https://doi.org/10.1002/jmri.22382 CrossRefGoogle Scholar
  25. 25.
    Dailey, H.L., Ghadiali, S.: Fluid–structure analysis of microparticle transport in deformable pulmonary alveoli. J. Aerosol Sci. 38, 269–288 (2007).  https://doi.org/10.1016/j.jaerosci.2007.01.001 CrossRefGoogle Scholar
  26. 26.
    Fitz-Clarke, J.R.: Mechanics of airway and alveolar collapse in human breath-hold diving. Respir. Physiol. Neurobiol. 159, 202–210 (2007).  https://doi.org/10.1016/j.resp.2007.07.006 CrossRefGoogle Scholar
  27. 27.
    de Ryk, J., Thiesse, J., Namati, E., et al.: Stress distribution in a three dimensional, geometric alveolar sac under normal and emphysematous conditions. Int. J. Chronic Obstr. Pulm. Dis. 2, 81 (2007).  https://doi.org/10.2147/copd.2007.2.1.81 CrossRefGoogle Scholar
  28. 28.
    Schirrmann, K., Mertens, M., Kertzscher, U., et al.: Theoretical modeling of the interaction between alveoli during inflation and deflation in normal and diseased lungs. J. Biomech. 43, 1202–1207 (2010).  https://doi.org/10.1016/j.jbiomech.2009.11.025 CrossRefGoogle Scholar
  29. 29.
    Schranz, C., Docherty, P.D., Chiew, Y.S., et al.: Structural identifiability and practical applicability of an alveolar recruitment model for ARDS patients. Drug IEEE Trans. Biomed. Eng. 59, 3396–3404 (2012).  https://doi.org/10.1109/TBME.2012.2216526 CrossRefGoogle Scholar
  30. 30.
    Bates, J.H., Irvin, C.G.: Time dependence of recruitment and derecruitment in the lung: a theoretical model. J. Appl. Physiol. 93, 705–713 (2002).  https://doi.org/10.1152/japplphysiol.01274.2001 CrossRefGoogle Scholar
  31. 31.
    Bates, J.H., Smith, B.J., Allen, G.B.: Computational models of ventilator induced lung injury and surfactant dysfunction. Drug Discov. Today Dis. Models 15, 17–22 (2015).  https://doi.org/10.1016/j.ddmod.2014.02.005 CrossRefGoogle Scholar
  32. 32.
    Weiss, C.H., Baker, D.W., Weiner, S., et al.: Theoretical modeling of the interaction between alveoli during inflation and deflation in normal and diseased lungs. Crit. Care Med. 44, 1515–1522 (2016).  https://doi.org/10.1097/CCM.0000000000001710 CrossRefGoogle Scholar
  33. 33.
    Wang, W., Das, A., Ali, T., et al.: Can computer simulators accurately represent the pathophysiology of individual COPD patients? Intensive Care Med. Exp. 2(23) (2014).  https://doi.org/10.1186/s40635-014-0023-0
  34. 34.
    Christley, S., Emr, B., Ghosh, A., et al.: Bayesian inference of the lung alveolar spatial model for the identification of alveolar mechanics associated with acute respiratory distress syndrome. Phys. Biol. 10(3), 036008 (2013).  https://doi.org/10.1088/1478-3975/10/3/036008 CrossRefGoogle Scholar
  35. 35.
    Grossbach, I., Chlan, L., Tracy, M.F.: Overview of mechanical ventilatory support and management of patient-and ventilator-related responses. Crit. Care Nurse 31, 30–44 (2011).  https://doi.org/10.4037/ccn2011595 CrossRefGoogle Scholar
  36. 36.
    Bungartz, H.J., Schäfer, M.: Fluid-Structure Interaction: Modelling, Simulation, Optimisation. Springer, Berlin (2006).  https://doi.org/10.1007/3-540-34596-5 CrossRefzbMATHGoogle Scholar
  37. 37.
    Lin, S., Han, X., Bi, Y., et al.: Fluid-structure interaction in abdominal aortic aneurysm: effect of modeling techniques. BioMed Res. Int. (2017).  https://doi.org/10.1155/2017/7023078 CrossRefGoogle Scholar
  38. 38.
    Kumar, H., Tawhai, M.H., Hoffman, E.A., et al.: The effects of geometry on airflow in the acinar region of the human lung. J. Biomech. 42, 1635–1642 (2009).  https://doi.org/10.1016/j.jbiomech.2009.04.046 CrossRefGoogle Scholar
  39. 39.
    Gehr, P., Bachofen, M., Weibel, E.R.: The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir. Physiol. 42, 121–140 (1978).  https://doi.org/10.1016/0034-5687(78)90104-4 CrossRefGoogle Scholar
  40. 40.
    Hansen, J.E., Ampaya, E.P.: Human air space shapes, sizes, areas, and volumes. J. Appl. Physiol. 38, 990–995 (1975)CrossRefGoogle Scholar
  41. 41.
    Klingele, T.G., Staub, N.C.: Alveolar shape changes with volume in isolated, air-filled lobes of cat lung. J. Appl. Physiol. 28, 411–414 (1970)CrossRefGoogle Scholar
  42. 42.
    Haefeli-Bleuer, B., Weibel, E.R.: Morphometry of the human pulmonary acinus. Anat. Rec. 220, 401–414 (1988).  https://doi.org/10.1002/ar.1092200410 CrossRefGoogle Scholar
  43. 43.
    Weibel, E.R.: Morphometry of the human lung. p. 1963. Heidelberg (1965)Google Scholar
  44. 44.
    Ma, B., Darquenne, C.: Aerosol deposition characteristics in distal acinar airways under cyclic breathing conditions. J. Appl. Physiol. 110, 1271–1282 (2011).  https://doi.org/10.1152/japplphysiol.00735.2010 CrossRefGoogle Scholar
  45. 45.
    Aghasafari, P., Ibrahim, I.B.M., Pidaparti, R.: Strain-induced inflammation in pulmonary alveolar tissue due to mechanical ventilation. Biomech. Model. Mechanobiol. 16(4), 1103–1118 (2017).  https://doi.org/10.1007/s10237-017-0879-5 CrossRefGoogle Scholar
  46. 46.
    Liu, Y., So, R., Zhang, C.: Modeling the bifurcating flow in a human lung airway. J. Biomech. 35, 465–473 (2002).  https://doi.org/10.1016/S0021-9290(01)00225-1 CrossRefGoogle Scholar
  47. 47.
    Wu, D., Jiang, X., Li, S., et al.: A new transient CFD method for determining the dynamic coefficients of liquid annular seals. J. Mech. Sci. Technol. 30, 3477–3486 (2016).  https://doi.org/10.1007/s12206-016-0707-3 CrossRefGoogle Scholar
  48. 48.
    Lai-Fook, S.J., Hyatt, R.E.: Effects of age on elastic moduli of human lungs. J. Appl. Physiol. 89, 163–168 (2000)CrossRefGoogle Scholar
  49. 49.
    Suki, B., Bartolák-Suki, E.: Biomechanics of the Aging Lung Parenchyma, Mechanical Properties of Aging Soft Tissues. Springer, Berlin (2015).  https://doi.org/10.1007/978-3-319-03970-1-5
  50. 50.
    Papandrinopoulou, D., Tzouda, V., Tsoukalas, G.: Lung compliance and chronic obstructive pulmonary disease. Pulm. Med. (2012).  https://doi.org/10.1155/2012/542769 CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Environmental, Civil, Agricultural, and Mechanical EngineeringUniversity of GeorgiaAthensUSA

Personalised recommendations