Advertisement

Acta Mechanica Sinica

, Volume 34, Issue 4, pp 706–715 | Cite as

Numerical computation of central crack growth in an active particle of electrodes influenced by multiple factors

Research Paper

Abstract

Mechanical degradation, especially fractures in active particles in an electrode, is a major reason why the capacity of lithium-ion batteries fades. This paper proposes a model that couples Li-ion diffusion, stress evolution, and damage mechanics to simulate the growth of central cracks in cathode particles \((\hbox {LiMn}_{2}\hbox {O}_{4})\) by an extended finite element method by considering the influence of multiple factors. The simulation shows that particles are likely to crack at a high discharge rate, when the particle radius is large, or when the initial central crack is longer. It also shows that the maximum principal tensile stress decreases and cracking becomes more difficult when the influence of crack surface diffusion is considered. The fracturing process occurs according to the following stages: no crack growth, stable crack growth, and unstable crack growth. Changing the charge/discharge strategy before unstable crack growth sets in is beneficial to prevent further capacity fading during electrochemical cycling.

Keywords

Li-ion battery Active particle of electrodes Central crack and growth Extended finite element method Crack surface diffusion 

Notes

Acknowledgements

Authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (11472165 and 11332005).

References

  1. 1.
    Palacín, M.R., de Guibert, A.: Why do batteries fail? Science 351, 1253292 (2016)CrossRefGoogle Scholar
  2. 2.
    Chiang, Y.M.: Building a better battery. Nature 330, 1485–1486 (2010)Google Scholar
  3. 3.
    Ebner, M., Marone, F., Stampanoni, M., et al.: Visualization and quantification of electrochemical and mechanical degradation in Li-ion batteries. Science 342, 716–720 (2013)CrossRefGoogle Scholar
  4. 4.
    Nitta, N., Wu, F., Lee, J.T., et al.: Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015)CrossRefGoogle Scholar
  5. 5.
    Goodenough, J.B., Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010)CrossRefGoogle Scholar
  6. 6.
    Xu, R., Zhao, K.: Electrochemomechanics of electrodes in Li-ion batteries: a review. J. Electrochem. Energy 13, 030803 (2016)Google Scholar
  7. 7.
    Kabir, M.M., Demirocak, D.E.: Degradation mechanisms in Li-ion batteries: a state-of-the-art review. Int. J. Energy Res. 41, 1963–1986 (2017)CrossRefGoogle Scholar
  8. 8.
    Li, Y., Li, Y., Pei, A., et al.: Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017)CrossRefGoogle Scholar
  9. 9.
    Guo, Z.S., Zhu, J., Feng, J., et al.: Direct in situ observation and explanation of lithium dendrite of commercial graphite electrodes. RSC Adv. 5, 69514–69521 (2015)CrossRefGoogle Scholar
  10. 10.
    Mukhopadhyay, A., Sheldon, B.W.: Deformation and stress in electrode materials for Li-ion batteries. Prog. Mater. Sci. 63, 58–116 (2014)CrossRefGoogle Scholar
  11. 11.
    Lin, X., Lu, W.: A battery model that enables consideration of realistic anisotropic environment surrounding an active material particle and its application. J. Power Sources 357, 220–229 (2017)CrossRefGoogle Scholar
  12. 12.
    Arora, P., White, R.E., Doyle, M.: Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc. 145, 3647–3667 (1998)CrossRefGoogle Scholar
  13. 13.
    Deshpande, R., Verbrugge, M., Cheng, Y.T., et al.: Battery cycle life prediction with coupled chemical degradation and fatigue mechanics. J. Electrochem. Soc. 159, A1730–A1738 (2012)CrossRefGoogle Scholar
  14. 14.
    Lee, S.W., Lee, H.W., Ryu, I., et al.: Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction. Nat. Commun. 6, 7533 (2015)CrossRefGoogle Scholar
  15. 15.
    Christensen, J., Newman, J.: A mathematical model of stress generation and fracture in lithium manganese oxide. J. Electrochem. Soc. 153, A1019–A1030 (2005)CrossRefGoogle Scholar
  16. 16.
    Christensen, J., Newman, J.: Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10, 293–319 (2006)CrossRefGoogle Scholar
  17. 17.
    Zhang, X., Shyy, W., Sastry, A.M.: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154, A910–A916 (2007)CrossRefGoogle Scholar
  18. 18.
    Cheng, Y.T., Verbrugge, M.W.: Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Sources 190, 453–460 (2009)CrossRefGoogle Scholar
  19. 19.
    Korsunsky, A.M., Sui, T., Song, B.: Explicit formulae for the internal stress in spherical particles of active material within lithium ion battery cathodes during charging and discharging. Mater. Des. 69, 247–252 (2015)CrossRefGoogle Scholar
  20. 20.
    Zhang, X., Hao, F., Chen, H., et al.: Diffusion-induced stresses in transversely isotropic cylindrical electrodes of lithium-ion batteries. J. Electrochem. Soc. 161, A2243–A2249 (2014)CrossRefGoogle Scholar
  21. 21.
    Lu, Y., Ni, Y.: Stress-mediated lithiation in nanoscale phase transformation electrodes. Acta Mech. Solida Sin. 30, 248–253 (2017)CrossRefGoogle Scholar
  22. 22.
    Ji, L., Guo, Z.: Analytical modeling and simulation of porous electrodes: Li-ion distribution and diffusion-induced stress. Acta Mech. Sin.  https://doi.org/10.1007/s10409-017-0704-5 (in press)
  23. 23.
    Zhu, M., Park, J., Sastry, A.M.: Fracture analysis of the cathode in Li-ion batteries: a simulation study. J. Electrochem. Soc. 159, A492–A498 (2012)CrossRefGoogle Scholar
  24. 24.
    Grantab, R., Shenoy, V.B.: Pressure-gradient dependent diffusion and crack propagation in lithiated silicon nanowires. J. Electrochem. Soc. 159, A584–A591 (2012)CrossRefGoogle Scholar
  25. 25.
    Klinsmann, M., Rosato, D., Kamlah, M., et al.: Modeling crack growth during Li insertion in storage particles using a fracture phase field approach. J. Mech. Phys. Solids 92, 313–344 (2016)CrossRefGoogle Scholar
  26. 26.
    Klinsmann, M., Rosato, D., Kamlah, M., et al.: Modeling crack growth during Li extraction and insertion within the second half cycle. J. Power Sources 331, 32–42 (2016)CrossRefGoogle Scholar
  27. 27.
    Zhao, K., Pharr, M., Vlassak, J.J., et al.: Fracture of electrodes in lithium-ion batteries caused by fast charging. J. Appl. Phys. 108, 073517 (2010)CrossRefGoogle Scholar
  28. 28.
    Woodford, W.H., Chiang, Y.M., Carter, W.C.: "Electrochemical shock" of intercalation electrodes: a fracture mechanics analysis. J. Electrochem. Soc. 157, A1052–A1059 (2010)CrossRefGoogle Scholar
  29. 29.
    Woodford, W.H., Carter, W.C., Chiang, Y.M.: Design criteria for electrochemical shock resistant battery electrodes. Energy Environ. Sci. 5, 8014–8024 (2012)CrossRefGoogle Scholar
  30. 30.
    Gao, Y.F., Zhou, M.: Coupled mechano-diffusional driving forces for fracture in electrode materials. J. Power Sources 230, 176–193 (2013)CrossRefGoogle Scholar
  31. 31.
    Lei, H.J., Wang, H.L., Liu, B., et al.: Quantitative law of diffusion induced fracture. Acta. Mech. Sin. 32, 611–632 (2016)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Wang, H., Jang, Y.I., Huang, B., et al.: TEM study of electrochemical cycling-induced damage and disorder in \(\text{ LiCoO }_{2}\) cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 146, 473–480 (1999)CrossRefGoogle Scholar
  33. 33.
    Lim, M.R., Cho, W.I., Kim, K.B.: Preparation and characterization of gold-codeposited \(\text{ LiMn }_{2}\text{ O }_{4}\) electrodes. J. Power Sources 92, 168–176 (2001)CrossRefGoogle Scholar
  34. 34.
    Ohzuku, T., Tomura, H., Sawai, K.: Monitoring of particle fracture by acoustic emission during charge and discharge of \(\text{ Li }/\text{ MnO }_{2}\) cells. J. Electrochem. Soc. 144, 3496–3500 (1997)CrossRefGoogle Scholar
  35. 35.
    Gabrisch, H., Wilcox, J., Doeff, M.M.: TEM study of fracturing in spherical and plate-like \(\text{ LiFePO }_{4}\) particles. Electrochem. Solid State Lett. 11, A25–A29 (2008)CrossRefGoogle Scholar
  36. 36.
    Wang, D., Wu, X., Wang, Z., et al.: Cracking causing cyclic instability of LiFePO\(_{4}\) cathode material. J. Power Sources 140, 125–128 (2005)CrossRefGoogle Scholar
  37. 37.
    Liu, X.H., Zhong, L., Huang, S., et al.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522–1531 (2012)CrossRefGoogle Scholar
  38. 38.
    Lin, N., Jia, Z., Wang, Z., et al.: Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam-scanning electron microscopy. J. Power Sources 365, 235–239 (2017)CrossRefGoogle Scholar
  39. 39.
    Zhang, H.L., Li, F., Liu, C., et al.: New insight into the solid electrolyte interphase with use of a focused ion beam. J. Phys. Chem. B 109, 22205–22211 (2005)CrossRefGoogle Scholar
  40. 40.
    Takahashi, K., Srinivasan, V.: Examination of graphite particle cracking as a failure mode in lithium-ion batteries: a model-experimental study. J. Electrochem. Soc. 162, A635–A645 (2015)CrossRefGoogle Scholar
  41. 41.
    Ebner, M., Geldmacher, F., Marone, F., et al.: X-ray tomography of porous, transition metal oxide based lithium ion battery electrodes. Adv. Energy Mater. 3, 845–850 (2013)CrossRefGoogle Scholar
  42. 42.
    Bhattacharya, S., Riahi, A.R., Alpas, A.T.: A transmission electron microscopy study of crack formation and propagation in electrochemically cycled graphite electrode in lithium-ion cells. J. Power Sources 196, 8719–8727 (2011)CrossRefGoogle Scholar
  43. 43.
    Choi, Y.S., Pharr, M., Kang, C.S., et al.: Microstructural evolution induced by micro-cracking during fast lithiation of single-crystalline silicon. J. Power Sources 265, 160–165 (2014)CrossRefGoogle Scholar
  44. 44.
    Harris, S.J., Deshpande, R.D., Qi, Y., et al.: Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress. J. Mater. Res. 25, 1433–1440 (2015)CrossRefGoogle Scholar
  45. 45.
    Hu, Y., Zhao, X., Suo, Z.: Averting cracks caused by insertion reaction in lithium-ion batteries. J. Mater. Res. 25, 1007–1010 (2011)CrossRefGoogle Scholar
  46. 46.
    He, X., Li, J., Cai, Y., et al.: Preparation of spherical spinel \(\text{ LiMn }_{2}{\text{ O }}_{4}\), cathode material for Li-ion batteries. Mater. Chem. Phys. 95, 105–108 (2006)CrossRefGoogle Scholar
  47. 47.
    ABAQUS/Standard: Version 6.16. Hibbitt, Karlsson, Serensen, Inc. (2016)Google Scholar
  48. 48.
    Sun, G., Bhattacharya, S., Alpas, A.T.: Cyclic strain-induced crack growth in graphite during electrochemical testing in propylene carbonate-based Li-ion battery electrolytes. J. Mater. Sci. 53, 1297–1309 (2018)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shanghai Institute of Applied Mathematics and MechanicsShanghai UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory of Mechanics in Energy EngineeringShanghai UniversityShanghaiChina

Personalised recommendations