Advertisement

Acta Mechanica Sinica

, Volume 34, Issue 4, pp 716–727 | Cite as

Reducing the anisotropy of a Brazilian disc generated in a bonded-particle model

  • Q. Zhang
  • X. P. Zhang
  • P. Q. Ji
Research Paper
  • 148 Downloads

Abstract

The Brazilian test is a widely used method for determining the tensile strength of rocks and for calibrating parameters in bonded-particle models (BPMs). In previous studies, the Brazilian disc has typically been trimmed from a compacted rectangular specimen. The present study shows that different tensile strength values are obtained depending on the compressive loading direction. Several measures are proposed to reduce the anisotropy of the disc. The results reveal that the anisotropy of the disc is significantly influenced by the compactibility of the specimen from which it is trimmed. A new method is proposed in which the Brazilian disc is directly generated with a particle boundary, effectively reducing the anisotropy. The stiffness (particle and bond) and strength (bond) of the boundary are set at less than and greater than those of the disc assembly, respectively, which significantly decreases the stress concentration at the boundary contacts and prevents breakage of the boundary particle bonds. This leads to a significant reduction in the anisotropy of the disc and the discreteness of the tensile strength. This method is more suitable for carrying out a realistic Brazilian test for homogeneous rock-like material in the BPM.

Keywords

Bonded-particle model Brazilian disc Anisotropy Compactibility Particle boundary 

Notes

Acknowledgements

Support provided by the National Basic Research Program of China (2015CB258500, 2015CB058102, 2014CB046904) is gratefully acknowledged.

References

  1. 1.
    The International Society for Rock Mechanics (ISRM): Suggested methods for determining tensile strength of rock materials. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15, 99–103 (1978)Google Scholar
  2. 2.
    Sundaram, P.N., Corrales, J.M.: Brazilian tensile strength of rocks with different elastic properties in tension and compression. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 17, 131–133 (1980)CrossRefGoogle Scholar
  3. 3.
    Basu, A., Mishra, D.A., Roychowdhury, K.: Rock failure modes under uniaxial compression, Brazilian, and point load tests. Bull. Eng. Geol. Environ. 72, 457–475 (2013)CrossRefGoogle Scholar
  4. 4.
    Newman, D.A., Bennett, D.G.: The effect of specimen size and stress rate for the Brazilian test: a statistical analysis. Rock Mech. Rock Eng. 23, 123–134 (1990)CrossRefGoogle Scholar
  5. 5.
    Fahimifar, A., Malekpour, M.: Experimental and numerical analysis of indirect and direct tensile strength using fracture mechanics concepts. Bull. Eng. Geol. Environ. 71, 269–283 (2012)CrossRefGoogle Scholar
  6. 6.
    Rocco, C., Guinea, G.V., Planas, J., et al.: Size effect and boundary conditions in the Brazilian test: experimental verification. Mater. Struct. 32, 210–217 (1999)CrossRefGoogle Scholar
  7. 7.
    Perras, M., Diederichs, M.: A review of the tensile strength of rock: concepts and testing. Geotech. Geol. Eng. 32, 525–546 (2014)CrossRefGoogle Scholar
  8. 8.
    Lanaro, F., Sato, T., Stephansson, O.: Microcrack modelling of brazilian tensile tests with the boundary element method. Int. J. Rock Mech. Min. Sci. 46, 450–461 (2009)CrossRefGoogle Scholar
  9. 9.
    Malan, D.F., Napier, J.A.L., Watson, B.P.: Propagation of fractures from an interface in a Brazilian test specimen. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 31, 581–596 (1994)CrossRefGoogle Scholar
  10. 10.
    Yu, Y., Yin, J., Zhong, Z.: Shape effects in the brazilian tensile strength test and a 3D FEM correction. Int. J. Rock Mech. Min. Sci. 43, 623–627 (2006)CrossRefGoogle Scholar
  11. 11.
    Zhou, X.P., Wang, Y., Qian, Q.: Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the extended non-ordinary state-based peridynamics. Eur. J. Mech. A Solids 60, 277–299 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zhu, W.C., Tang, C.A.: Numerical simulation of brazilian disk rock failure under static and dynamic loading. Int. J. Rock Mech. Min. Sci. 43, 236–252 (2006)CrossRefGoogle Scholar
  13. 13.
    Tan, X., Konietzky, H., Fruhwirt, T., et al.: Brazilian tests on transversely isotropic rocks: laboratory testing and numerical simulations. Rock Mech. Rock Eng. 48, 1341–1351 (2015)CrossRefGoogle Scholar
  14. 14.
    Wang, Y., Zhou, X., Xu, X.: Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics. Eng. Fract. Mech. 163, 248–273 (2016)CrossRefGoogle Scholar
  15. 15.
    Zhou, X.P., Wang, Y., Xu, X.: Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics. Intl. J. Fract. 201, 1–22 (2016)CrossRefGoogle Scholar
  16. 16.
    Zhou, X.P., Bi, J., Qian, Q.H.: Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws. Rock Mech. Rock Eng. 48, 1097–1114 (2015)CrossRefGoogle Scholar
  17. 17.
    Liakas, S., O’Sullivan, C., Saroglou, H.: Assessment of influence of heterogeneity on rock strength and stiffness using PFC. J. Rock Mech. Geotech. Eng. 9, 575–584 (2017)CrossRefGoogle Scholar
  18. 18.
    Yang, S.Q., Tian, W.L., Huang, Y.H., et al.: An experimental and numerical study on cracking behavior of brittle sandstone containing two non-coplanar fissures under uniaxial compression. Rock Mech. Rock Eng. 49, 1497–1515 (2016)CrossRefGoogle Scholar
  19. 19.
    Zhang, X.P., Ji, P.Q., Liu, Q.S., et al.: Physical and numerical studies of rock fragmentation subject to wedge cutter indentation in the mixed ground. Tunn. Undergr. Sp. Technol. 71, 354–365 (2018)CrossRefGoogle Scholar
  20. 20.
    Zhang, X.P., Liu, Q., Wu, S., et al.: Crack coalescence between two non-parallel flaws in rock-like material under uniaxial compression. Eng. Geol. 199, 74–90 (2015)CrossRefGoogle Scholar
  21. 21.
    Zhang, X.P., Wong, L.N.Y.: Choosing a proper loading rate for bonded-particle model of intact rock. Int. J. Fract. 189, 163–179 (2014)CrossRefGoogle Scholar
  22. 22.
    Zhang, X.P., Wong, L.N.Y.: Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach. Rock Mech. Rock Eng. 46, 1001–1021 (2013)CrossRefGoogle Scholar
  23. 23.
    He, J., Afolagboye, L.O.: Influence of layer orientation and interlayer bonding force on the mechanical behavior of shale under Brazilian test conditions. Acta Mech. Sin. 1–10 (2017)Google Scholar
  24. 24.
    Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41, 1329–1364 (2004)CrossRefGoogle Scholar
  25. 25.
    Cai, M., Kaiser, P.K.: Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with pre-existing cracks. Int. J. Rock Mech. Min. Sci. 41, 450–451 (2004)CrossRefGoogle Scholar
  26. 26.
    Yang, S.Q., Huang, Y.H.: Particle flow study on strength and meso-mechanism of Brazilian splitting test for jointed rock mass. Acta Mech. Sin. 30, 547–558 (2014)CrossRefGoogle Scholar
  27. 27.
    Ghazvinian, A., Nejati, H.R., Sarfarazi, V., et al.: Mixed mode crack propagation in low brittle rock-like materials. Arab. J. Geosci. 6, 4435–4444 (2013)CrossRefGoogle Scholar
  28. 28.
    Vesga, L.F., Vallejo, L.E., Lobo-Guerrero, S.: DEM analysis of the crack propagation in brittle clays under uniaxial compression tests. Int. J. Numer. Anal. Methods Geomech. 32, 1405–1415 (2008)CrossRefzbMATHGoogle Scholar
  29. 29.
    Chung, Y.C., Yang, Z.H., Lin, C.K.: Modelling micro-crack initiation and propagation of crystal structures with microscopic defects under uni-axial tension by discrete element method. Powder Technol. 315, 445–476 (2017)CrossRefGoogle Scholar
  30. 30.
    Zhang, X.P., Wong, L.N.Y.: Loading rate effects on cracking behavior of flaw-contained specimens under uniaxial compression. Int. J. Fract. 180, 93–110 (2013)CrossRefGoogle Scholar
  31. 31.
    Zhang, X.P., Wong, L.N.Y.: Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach. Rock Mech. Rock Eng. 45, 711–737 (2012)Google Scholar
  32. 32.
    Zhang, X.P., Wong, L.N.Y.: Displacement field analysis for cracking processes in bonded-particle model. Bull. Eng. Geol. Environ. 73, 13–21 (2014)CrossRefGoogle Scholar
  33. 33.
    Zhang, Q., Zhang, X.P.: A numerical study on cracking processes in limestone by the b-value analysis of acoustic emissions. Comput. Geotech. 92, 1–10 (2017)CrossRefGoogle Scholar
  34. 34.
    Fairhurst, C.: On the validity of the ‘Brazilian’ test for brittle materials. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1, 535–546 (1964)CrossRefGoogle Scholar
  35. 35.
    Erarslan, N., Liang, Z.Z., Williams, D.J.: Experimental and numerical studies on determination of indirect tensile strength of rocks. Rock Mech. Rock Eng. 45, 739–751 (2012)CrossRefGoogle Scholar
  36. 36.
    Hiramatsu, Y., Oka, Y.: Determination of the tensile strength of rock by a compression test of an irregular test piece. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 3, 89–90 (1966)CrossRefGoogle Scholar
  37. 37.
    Hung, K.M., Ma, C.C.: Theoretical analysis and digital photoelastic measurement of circular disks subjected to partially distributed compressions. Exp. Mech. 43, 216–224 (2003)Google Scholar
  38. 38.
    Lavrov, A., Vervoort, A., Wevers, M., et al.: Experimental and numerical study of the kaiser effect in cyclic brazilian tests with disk rotation. Int. J. Rock Mech. Min. Sci. 39, 287–302 (2002)CrossRefGoogle Scholar
  39. 39.
    Itasca: (Particle Flow Code in 2 Dimensions) version 3.1. Itasca Cons Group, Minneapolis (2004)Google Scholar
  40. 40.
    Wang, C., Tannant, D.D., Lilly, P.A.: Numerical analysis of the stability of heavily jointed rock slopes using PFC2D. Int. J. Rock Mech. Min. Sci. 40, 415–424 (2003)CrossRefGoogle Scholar
  41. 41.
    Schubert, W., Khanal, M., Tomas, J.: Impact crushing of particle-particle compounds–experiment and simulation. Int. J. Miner. Process. 75, 41–52 (2005)CrossRefGoogle Scholar
  42. 42.
    Khanal, M., Schubert, W., Tomas, J.: Dem simulation of diametrical compression test on particle compounds. Granul. Matter. 7, 83–90 (2005)CrossRefzbMATHGoogle Scholar
  43. 43.
    Al-Busaidi, A., Hazzard, J.F., Young, R.P.: Distinct element modeling of hydraulically fractured lac du bonnet granite. J. Geophys. Res. 110, 351–352 (2005)CrossRefGoogle Scholar
  44. 44.
    Tan, Y., Yang, D., Sheng, Y.: Study of polycrystalline \( {\text{ Al }}_{2} {\text{ O }}_{3}\) machining cracks using discrete element method. Int. J. Mach. Tools Manuf. 48, 975–982 (2008)CrossRefGoogle Scholar
  45. 45.
    Inoue, K., Shimizu, N., Funatsu, T.: Influence of clump radius on the mechanical properties of hard rock in the clumped particle model. In: Proceedings of Meeting, Korean, October, 153–160 (2009)Google Scholar
  46. 46.
    Tan, Y., Yang, D., Sheng, Y.: Discrete element method (DEM) modeling of fracture and damage in the machining process of polycrystalline SiC. J. Eur. Ceram. Soc. 29, 1029–1037 (2009)CrossRefGoogle Scholar
  47. 47.
    Shimizu, H., Murata, S., Ishida, T.: The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution. Int. J. Rock Mech. Min. Sci. 48, 712–727 (2011)CrossRefGoogle Scholar
  48. 48.
    Lee, H., Jeon, S.: An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int. J. Solids Struct. 48, 979–999 (2011)CrossRefzbMATHGoogle Scholar
  49. 49.
    Sarmadivaleh, M.: Experimental and numerical study of interaction of a pre-existing natural interface and an induced hydraulic fracture. [PhD Thesis], Curtin University (2012)Google Scholar
  50. 50.
    Zhao, X.: Imaging the mechanics of hydraulic fracturing in naturally-fractured reservoirs using induced seismicity and numerical modeling. [PhD Thesis], University of Toronto (2012)Google Scholar
  51. 51.
    Ghazvinian, A., Sarfarazi, V., Schubert, W., et al.: A study of the failure mechanism of planar non-persistent open joints using PFC2D. Rock Mech. Rock Eng. 45, 677–693 (2012)CrossRefGoogle Scholar
  52. 52.
    Yoon, J.: Application of experimental design and optimization to pfc model calibration in uniaxial compression simulation. Int. J. Rock Mech. Min. Sci. 44, 871–889 (2013)CrossRefGoogle Scholar
  53. 53.
    Manouchehrian, A., Sharifzadeh, M., Marji, M.F., et al.: A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression. Arch. Civil Mech. Eng. 14, 40–52 (2013)CrossRefGoogle Scholar
  54. 54.
    Wong, L.N.Y., Zhang, X.P.: Size effects on cracking behavior of flaw-containing specimens under compressive loading. Rock Mech. Rock Eng. 47, 1921–1930 (2014)CrossRefGoogle Scholar
  55. 55.
    Nakashima, S., Taguchi, K., Shimizu, N., et al.: Effect of element configuration on Brazilian tensile failure by DEM. In: ISRM International Symposium, Sapporo, Japan, October 14–16 (2014)Google Scholar
  56. 56.
    Duan, K., Kwok, C.Y.: Discrete element modeling of anisotropic rock under Brazilian test conditions. Int. J. Rock Mech. Min. Sci. 78, 46–56 (2015)Google Scholar
  57. 57.
    Tomac, I., Gutierrez, M.: Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM. J. Rock Mech. Geotech. Eng. 9, 92–104 (2017)CrossRefGoogle Scholar
  58. 58.
    Zhu, X., Liu, W., He, X.: The investigation of rock indentation simulation based on discrete element method. KSCE J. Civil Eng. 21, 1–12 (2016)Google Scholar
  59. 59.
    Zhang, X.P., Zhang, Q.: Distinction of crack nature in brittle rock-like materials: a numerical study based on moment tensors. Rock Mech. Rock Eng. 50, 2837–2845 (2017)CrossRefGoogle Scholar
  60. 60.
    Zhang, X.P., Zhang, Q., Wu, S.: Acoustic emission characteristics of the rock-like material containing a single flaw under different compressive loading rates. Comput. Geotech. 83, 83–97 (2017)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Key Laboratory of Safety for Geotechnical and Structural Engineering of Hubei Province, School of Civil EngineeringWuhan UniversityWuhanChina

Personalised recommendations