Skip to main content
Log in

Hierarchical model for strain generalized streaming potential induced by the canalicular fluid flow of an osteon

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A hierarchical model is developed to predict the streaming potential (SP) in the canaliculi of a loaded osteon. Canaliculi are assumed to run straight across the osteon annular cylinder wall, while disregarding the effect of lacuna. SP is generalized by the canalicular fluid flow. Analytical solutions are obtained for the canalicular fluid velocity, pressure, and SP. Results demonstrate that SP amplitude (SPA) is proportional to the pressure difference, strain amplitude, frequency, and strain rate amplitude. However, the key loading factor governing SP is the strain rate, which is a representative loading parameter under the specific physiological state. Moreover, SPA is independent of canalicular length. This model links external loads to the canalicular fluid pressure, velocity, and SP, which can facilitate further understanding of the mechanotransduction and electromechanotransduction mechanisms of bones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinbaum, S., Cowin, S.C., Zeng, Y.: A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. Journal of Biomechanics 27, 339–360 (1994)

    Article  Google Scholar 

  2. Qin, Y.X., Kaplan, T., Saldanha, A., et al.: Fluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity. Journal of Biomechanics 36, 1427–1437 (2003)

    Article  Google Scholar 

  3. Munro, P.A., Dunnill, P., Lilly, M.D.: Nonporous magnetic materials as enzyme supports: studies with immobilized chymotrypsin. Biotechnology and Bioengineering 19, 101–124 (1977)

    Article  Google Scholar 

  4. Yasuda, I.: Piezoelectricity of living bone. Kyoto Furitsu Ika Daigaku Zasshi 53, 2019–2024 (1964)

    Google Scholar 

  5. Basset, C., Becker, R.: Generation of electric potentials by bone in response to mechanical stress. Science 137, 1063–1064 (1962)

    Article  Google Scholar 

  6. Steinberg, M.E., Bosch, A.M.D., et al.: Electrical potentials in stressed bone. Clinical Orthopaedics and Related Research 61, 294–300 (1968)

    Article  Google Scholar 

  7. Qin, Q.H., Ye, J.Q.: Thermoelectroelastic solutions for internal bone remodeling under axial and transverse loads. International Journal of Solids and Structures 41, 2447–2460 (2004)

    Article  MATH  Google Scholar 

  8. Anderson, J.C., Eriksson, C.: Electrical properties of wet collagen. Nature 218, 166–168 (1968)

    Article  Google Scholar 

  9. Yokota, H., Tanaka, S.M.: Osteogenic potentials with joint-loading modality. Journal of Bone and Mineral Metabolism 23, 302–308 (2005)

    Article  Google Scholar 

  10. Pienkowski, D., Pollack, S.R.: The origin of stress-generated potentials in fluid saturated bone. Journal of Orthopaedic Qesearch 1, 30–41 (1983)

    Article  Google Scholar 

  11. Gross, D., Williams, W. S.: Streaming potential and the electromechanical response of physiologically moist Bone. Journal of Biomechanics 15, 277–295 (1982)

    Article  Google Scholar 

  12. Salzstein, R.A., Pollack, S.R.: Electromechanical potentials in cortical bone—I. A continuum approach. Journal of Biomechanics 20, 261–270 (1987)

    Article  Google Scholar 

  13. Salzstein, R.A., Pollack, S.R.: Electromechanical potentials in cortical bone—II. Experimental analysis. Journal of Biomechanics 20, 271–280 (1987)

    Article  Google Scholar 

  14. Cowin, S.C., Weinbaum, S., Zeng, Y.: A case for the bone canaliculi as the anatomical site of strain generated potentials. Journal of Biomechanics 28, 1281–1297 (1995)

    Article  Google Scholar 

  15. Ahn, A., Grodzinsky, A.: Relevance of collagen piezoelectricity to Wolff’s law, A critical review. Medical Engineering & Physics 31, 733–741 (2009)

    Article  Google Scholar 

  16. Petrov, N., Pollack, S., Blagoeva, R.: A discrete model for streaming potentials in a single osteon. Journal of Biomechanics 22, 517–521 (1989)

    Article  Google Scholar 

  17. Cowin, S.C.: Bone poroelasticity. Journal of Biomechanics 32, 217–238 (1999)

    Article  Google Scholar 

  18. Pollack, S., Petrov, N., Salzstein, R., et al.: An anatomical model for streaming potentials in osteons. Journal of Biomechanics 17, 627–636 (1984)

    Article  Google Scholar 

  19. Zeng, Y., Cowin, S.C., Weinbaum, S.: A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon. Annals of Biomedical Engineering 22, 280–292 (1994)

    Article  Google Scholar 

  20. Rémond, A., Naili, S.: Transverse isotropic poroelastic osteon model under cyclic loading. Mechanics Research Communications 32, 645–651 (2005)

    Article  MATH  Google Scholar 

  21. Wu, X.G., Wang, Y.Q., Wu, X.H., et al.: Effects of microcracks on the poroelastic behaviors of a single osteon. Science China Physics, Mechanics & Astronomy 57, 2161–2167 (2014)

    Article  Google Scholar 

  22. Abousleiman, Y., Cui, L.: Poroelastic solutions in transversely isotropic media for wellbore and cylinder. International Journal of Solids and Structures 35, 4905–4929 (1998)

    Article  MATH  Google Scholar 

  23. Wu, X.G., Chen, W.Y.: A hollow osteon model for examining its poroelastic behaviors: mathematically modeling an osteon with different boundary cases. European Journal of Mechanics/A Solids 40, 34–49 (2013)

    Article  MathSciNet  Google Scholar 

  24. Wu, X.G., Chen, W.Y.: Poroelastic behaviors of the osteon, a comparison of two theoretical osteon models. Acta Mechanica Sinica 29, 612–621 (2013)

    Article  Google Scholar 

  25. Wu, X.G., Chen, W.Y., Gao, Z.P., et al.: The effects of Haversian fluid pressure and harmonic axial loading on the poroelastic behaviors of a single osteon. Science China Physics, Mechanics & Astronomy 55, 1646–1656 (2012)

    Article  Google Scholar 

  26. Wu, X.G., Chen, W.Y., Wang, D. X.: A mathematical osteon model for examining its poroelastic behaviors. Applied Mathematics and Mechanics 34, 405–416 (2013)

    Article  MathSciNet  Google Scholar 

  27. Carolyn, L.R., Dongqing, L.: Electroviscous effects on pressure-driven flow of dilute electrolyte solutions in small microchannels. Journal of Colloid and Interface Science 274, 319–330 (2004)

    Article  Google Scholar 

  28. Mei, L., Jun, Y.: Electrokinetic effect of the endothelial glycocalyx layer on two-phase blood flow in small blood vessels. Microvascular Research 78, 14–19 (2009)

    Article  Google Scholar 

  29. Lanyon, L.E., Hampson, W.G., Goodship, A.E., et al.: Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthopaedica Scandinavica 46, 256–268 (1975)

    Article  Google Scholar 

  30. Burr, D. B., Milgrom, C., Fyhrie, D., et al.: In vivo measurement of human tibial strains during vigorous activity. Bone 18, 405–410 (1996)

    Article  Google Scholar 

  31. Fritton, S.P., Kenneth, J.M., Rubin, C.T.: Quantifying the strain history of bone, spatial uniformity and self-similarity of low magnitude strains. Journal of Biomechanics 33, 317–325 (2000)

    Article  Google Scholar 

  32. Cowin, S.C.: Mechanosensation and fluid transport in living bone. Journal of Musculoskeletal and Neuronal Interactions 2, 256–260 (2002)

    Google Scholar 

  33. Chakkalakal, D.A., Johnson, M.W., Harper, R.A., et al.: Dielectric properties of fluid-saturated bone. IEEE Transactions on Biomedical Engineering 27, 95–100 (1980)

    Article  Google Scholar 

  34. Hung, C.T., Allen, F.D., Pollack, S.R., et al.: What is the role of the convective current density in the real-time calcium response of cultured bone cells to fluid flow? Journal of Biomechanics 29, 1403–1409 (1996)

    Article  Google Scholar 

  35. Turner, C.H.: Three rules for bone adaptation to mechanical stimuli. Bone 23, 399–407 (1998)

    Article  Google Scholar 

  36. Rémond, A., Naili, S., Lemaire, T.: Interstitial fluid flow in the osteon with spatial gradients of mechanical properties, a finite element study. Biomechanics and Modeling in Mechanobiology 7, 487–495 (2008)

    Article  Google Scholar 

  37. Beno, T., Yoon, Y.J., Cowin, S.C., et al.: Estimation of bone permeability using accurate microstructural measurements. Journal of Biomechanics 39, 2378–2387 (2006)

    Article  Google Scholar 

  38. Burger, E.H., Klein-Nulend, J.: Mechanotransduction in bone, role of the lacuno-canalicular network. FASEB Journal 13, S101–112 (1999)

    Google Scholar 

  39. Reilly, G., Knapp, H., Stemmer, A., et al. Investigation of the lacunocanalicular system of cortical bone using atomic force microscopy. Annals of Biomedical Engineering 29, 1074–1081 (2001)

    Article  Google Scholar 

  40. Knapp, H.F., Reilly, G.C., Stemmer, A., et al.: Development of preparation methods for and insights obtained from atomic force microscopy of fluid spaces in cortical bone. Scanning 24, 25–33 (2001)

    Article  Google Scholar 

  41. Guzelsu, N., Walsh, W.R.: Streaming potential of intact wet bone. Journal of Biomechanics 23, 673–685 (1990)

    Article  Google Scholar 

  42. Nguyen, V. H., Lemaire, T., Naili, S.: Poroelastic behaviour of cortical bone under harmonic axial loading, a finite element study at the osteonal scale. Medical Engineering & Physics 32, 384–390 (2010)

    Article  Google Scholar 

  43. Lemaire, T., Naili, S., Rémond, A.: Study of the influence of fibrous pericellular matrix in the cortical interstitial fluid movement. Journal of Biomechanical Engineering 130, 1–11 (2008)

    Article  Google Scholar 

  44. Lemaire, T., Naili, S., Rémond, A.: Multi-scale analysis of the coupled effects governing the movement of interstitial fluid in cortical bone. Biomechanics and Modeling inMechanobiology 5, 39–52 (2006)

    Article  Google Scholar 

  45. Lemaire, T., Kaiser, J., Naili, S., et al.: Modeling of the transport in electrically charged porous media including ionic exchanges. Mechanics Research Communications 37, 495–499 (2010)

    Article  MATH  Google Scholar 

  46. Lemaire, T., Sansalonem, V., Nailim, S.: Multiphysical modelling of fluid transport through osteo-articular media. Anais da Academia Brasileira de Ciencias 82, 127–144 (2010)

    Article  MATH  Google Scholar 

  47. Lemaire, T., Capiez-Lernout, E., Kaiser, J., et al.: A multiscale theoretical investigation of electric measurements in living bone piezoelectricity and electrokinetics. Bulletin of Mathematical Biology 73, 2649–2677 (2011)

    Article  MathSciNet  Google Scholar 

  48. Fritton, S.P., McLeod, K.J., Rubin, C.T.: Cross-species spectral similarity in the strain history of bone. In: Transactions of 42nd Annual Meeting, Orthopaedic Research Society 19–22, 132–22 (1996)

    Google Scholar 

  49. Rubin, C.T., McLeod, K.J.: Endogenous control of bone morphology via frequency specific low magnitude functional strain. In: Odgaard, A., Weinans, H., eds. Bone Structure and Remodeling, Recent Advances in Human Biology Series, World Scientific 2, 79–90 (1995)

    Google Scholar 

  50. Malachanne, E., Dureisseix, D., Canadas, P., et al.: Experimental and numerical identification of cortical bone permeability. Journal of Biomechanics 41, 721–725 (2008)

    Article  Google Scholar 

  51. You, L., Cowin, S.C., Schaffler, M., et al.: A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. Journal of Biomechanics 34, 1375–1386 (2001)

    Article  Google Scholar 

  52. Cowin, S.C., Doty, S.B.: Tissue Mechanics. Springer, New York (2007)

    Book  MATH  Google Scholar 

  53. Shaw, D.: Electrophoresis. Academic Press, New York (1969)

    Google Scholar 

  54. Black, J., Mattson, R.U.: Relationship between porosity and mineralization in the Haversian osteon. Calcified Tissue International 34, 332–336 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Yi Chen.

Additional information

The project was supported by the OIT of Higher Learning Institutions of Shanxi, the National Natural Science Foundation of China (11302143, 11472185), and Natural Science Fund of Shanxi (2014021013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XG., Yu, WL., Cen, HP. et al. Hierarchical model for strain generalized streaming potential induced by the canalicular fluid flow of an osteon. Acta Mech Sin 31, 112–121 (2015). https://doi.org/10.1007/s10409-015-0002-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0002-z

Keywords

Navigation