Advertisement

Influenza – jeder kennt die „Grippe“ und doch wird sie immer noch unterschätzt

  • Tobias WelteEmail author
Leitthema
  • 3 Downloads

Zusammenfassung

Keine Infektionskrankheit ist weltweit für so viele Krankheits- und Todesfälle verantwortlich wie die Influenza. Es existieren 3 humanpathogene Influenzagruppen, Influenza A, B und C, wobei Influenza A dominiert. Die Übertragung kann auf verschiedenen Wegen erfolgen: von Wildvögeln, die selbst nicht erkranken, auf domestiziertes Geflügel und dann weiter auf den Menschen oder durch direkte Ansteckung von Mensch zu Mensch, als Beispiel wird der Aufenthalt in einem Flugzeug dargestellt. Der Beitrag schildert die Influenzasituation 2018/2019, beschreibt die besondere Herausforderung der Influenza durch Sekundärinfektionen und Komorbiditäten und informiert über Therapie und den Einsatz von Kortikosteroiden. Die wichtigste Maßnahme gegen Influenza bleibt die Krankheitsprävention mittels Impfung. Doch die Impfraten sind weltweit und in Deutschland unzureichend, weshalb der Aufklärung über Nutzen und Risiken von Impfmaßnahmen in Zukunft deutlich mehr Beachtung geschenkt werden muss.

Schlüsselwörter

Influenzavirus H1N1-Virus Grippeimpfung Kortikosteroide Komorbiditäten 

Influenza—everybody knows the “flu” but the threat it is still underestimated

Abstract

No infectious disease is responsible worldwide for so many cases of illness and fatalities as influenza. There are three human pathogenic groups of influenza, influenza A, B and C, whereby influenza A is predominant. The disease can be transmitted via various routes: from wild birds, which are not affected themselves, to domesticated poultry and then further to humans or by direct infection from person to person. As an example the transmission rate while travelling in an aircraft is described. This article depicts the influenza situation in 2018 and 2019, describes the special challenge of influenza by secondary infections and comorbidities and provides information on the treatment and the use of corticosteroids. The most important measure against influenza is still prevention of the disease by vaccination; however, the vaccination rates worldwide and in Germany are insufficient. Therefore, much more attention must be paid to clarification of the benefits and risks of vaccination measures in the future.

Keywords

Influenza virus H1N1 virus Influenza vaccines Corticosteroids Comorbidity 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

T. Welte erhält Honorare für Vorträge von GSK, Novartis, Pfizer und Roche.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    European Centre for Disease Prevention and Control (2018) Influenza ranked highest in burden of disease measured in DALYs. https://ecdc.europa.eu/en/news-events/influenza-ranked-highest-burden-disease-measured-dalys. Zugegriffen: 9. Mai 2019Google Scholar
  2. 2.
    Nickol ME, Kindrachuk J (2019) A year of terror and a century of reflection: Perspectives on the great influenza pandemic of 1918–1919. BMC Infect Dis 19(1):117CrossRefGoogle Scholar
  3. 3.
    Asha K, Kumar B (2019) Emerging influenza D virus threat: What we know so far! J Clin Med 8(2):192CrossRefGoogle Scholar
  4. 4.
    Hertzberg VS, Weiss H, Elon L et al (2018) Behaviors, movements, and transmission of droplet-mediated respiratory diseases during transcontinental airline flights. Proc Natl Acad Sci U S A 115(14):3623–3627CrossRefGoogle Scholar
  5. 5.
    Khanna M, Shackleton C, Verheggen M (2013) Evaluating hypoxia during air travel in healthy infants. Thorax 68(12):1163–1164CrossRefGoogle Scholar
  6. 6.
    Ambrose CS, Levin MJ (2012) The rationale for quadrivalent influenza vaccines. Hum Vaccin Immunother 8(1):81–88CrossRefGoogle Scholar
  7. 7.
    Robert Koch-Institut (2019) Karten der Aktivität akuter respiratorischer Erkrankungen in Deutschland (ARE-Aktivität). https://influenza.rki.de/MapArchive.aspx. Zugegriffen: 10. Sept. 2018Google Scholar
  8. 8.
    Robert Koch-Institut (2019) Wochenberichte der AGI. https://influenza.rki.de/Wochenberichte.aspx. Zugegriffen: 10. Sept. 2018Google Scholar
  9. 9.
    Robert Koch-Institut (2019) Karten der Aktivität akuter respiratorischer Erkrankungen in Deutschland (ARE-Aktivität). https://influenza.rki.de/MapArchive.aspx. Zugegriffen: 10. Mai 2019Google Scholar
  10. 10.
    Kochanek M, Böll B et al (2018) Influenza Saison 2017/ 2018—„Business as usual“ Eine Stellungnahme der Fachgesellschaften. Internist (Berl) 59(10):1122–1124CrossRefGoogle Scholar
  11. 11.
    Ständige Impfkommission (2018) Epidemiologisches Bulletin 2018 (Nr. 34: 342)Google Scholar
  12. 12.
    Violi F, Cangemi R, Falcone M et al (2017) Cardiovascular complications and short-term mortality risk in community-acquired pneumonia. Clin Infect Dis 64(11):1486–1493CrossRefGoogle Scholar
  13. 13.
    Kwong JC, Schwartz KL, Campitelli MA et al (2018) Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med 378(4):345–353CrossRefGoogle Scholar
  14. 14.
    Scheuch G, Canisius S, Nocker K et al (2018) Targeting intracellular signaling as an antiviral strategy: Aerosolized LASAG for the treatment of influenza in hospitalized patients. Emerg Microbes Infect 7(1):21CrossRefGoogle Scholar
  15. 15.
    Paddock CD, Liu L, Denison AM et al (2012) Myocardial injury and bacterial pneumonia contribute to the pathogenesis of fatal influenza B virus infection. J Infect Dis 205(6):895–905CrossRefGoogle Scholar
  16. 16.
    Sheng ZM, Chertow DS, Ambroggio X et al (2011) Autopsy series of 68 cases dying before and during the 1918 influenza pandemic peak. Proc Natl Acad Sci U S A 108(39):16416–16421CrossRefGoogle Scholar
  17. 17.
    Connor V, German E, Pojar S et al (2018) Hands are vehicles for transmission of streptococcus pneumoniae in novel controlled human infection study. Eur Respir J.  https://doi.org/10.1183/13993003.00599-2018 CrossRefPubMedGoogle Scholar
  18. 18.
    McLaughlin JM, Jiang Q, Isturiz RE et al (2018) Effectiveness of 13-valent pneumococcal conjugate vaccine against hospitalization for community-acquired pneumonia in older US adults: A test-negative design. Clin Infect Dis 67(10):1498–1506PubMedPubMedCentralGoogle Scholar
  19. 19.
    Crotty MP, Meyers S, Hampton N, Bledsoe S et al (2015) Epidemiology, co-infections, and outcomes of viral pneumonia in adults: An observational cohort study. Medicine (Baltimore) 94(50):e2332CrossRefGoogle Scholar
  20. 20.
    Schauwvlieghe AFAD, Rijnders BJA, Philips N et al (2018) Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: A retrospective cohort study. Lancet Respir Med 6(10):782–792CrossRefGoogle Scholar
  21. 21.
    Bassetti M, Bouza E (2017) Invasive mould infections in the ICU setting: complexities and solutions. J Antimicrob Chemother 72(suppl_1):i39–i47CrossRefGoogle Scholar
  22. 22.
    Maertens JA, Raad II, Marr KA et al (2016) Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by aspergillus and other filamentous fungi (SECURE): A phase 3, randomised-controlled, non-inferiority trial. Lancet 387(10020):760–769CrossRefGoogle Scholar
  23. 23.
    Marty FM, Ostrosky-Zeichner L, Cornely OA et al (2016) Isavuconazole treatment for mucormycosis: A single-arm open-label trial and case-control analysis. Lancet Infect Dis 16(7):828–837CrossRefGoogle Scholar
  24. 24.
    Tissot F, Agrawal S, Pagano L et al (2017) ECIL-6 guidelines for the treatment of invasive candidiasis, aspergillosis and mucormycosis in leukemia and hematopoietic stem cell transplant patients. Haematologica 102(3):433–444CrossRefGoogle Scholar
  25. 25.
    Ullmann AJ, Aguado JM, Arikan-Akdagli S et al (2018) Diagnosis and management of aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 24(Suppl 1):e1–e38CrossRefGoogle Scholar
  26. 26.
    Huang X, Wang F, Chen Y et al (2012) A multicenter, open-label study of posaconazole oral suspension in the treatment of invasive fungal infections in patients refractory to or intolerant of first-line therapy. Future Microbiol 7(2):201–209CrossRefGoogle Scholar
  27. 27.
    Muthuri SG, Venkatesan S, Myles PR et al (2014) Effectiveness of neuraminidase inhibitors in reducing mortality in patients admitted to hospital with influenza A H1N1pdm09 virus infection: A meta-analysis of individual participant data. Lancet Respir Med 2(5):395–404CrossRefGoogle Scholar
  28. 28.
    Venkatesan S, Myles PR, Leonardi-Bee J et al (2017) Impact of outpatient neuraminidase inhibitor treatment in patients infected with influenza A(H1N1)pdm09 at high risk of hospitalization: An individual participant data metaanalysis. Clin Infect Dis 64(10):1328–1334CrossRefGoogle Scholar
  29. 29.
    van de Wakker SI et al (2017) New drug-strategies to tackle viral-host interactions for the treatment of influenza virus infections. Eur J Pharmacol 809:178–190CrossRefGoogle Scholar
  30. 30.
    Hayden FG, Sugaya N, Hirotsu N et al (2018) Baloxavir marboxil for uncomplicated influenza in adults and adolescents. N Engl J Med 379(10):913–923CrossRefGoogle Scholar
  31. 31.
    Moss RB, Hansen C, Sanders RL et al (2012) A phase II study of DAS181, a novel host directed antiviral for the treatment of influenza infection. J Infect Dis 206:1844–1851CrossRefGoogle Scholar
  32. 32.
    De Vries E, Tscherne DM, Wienholts MJ et al (2011) Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. Plos Pathog 7:e1001329CrossRefGoogle Scholar
  33. 33.
    Harada S, Yokomizo K, Monde K et al (2007) A broad antiviral neutral glycolipid, fattiviracin FV-8, is a membrane fluidity modulator. Cell Microbiol 9:196–203CrossRefGoogle Scholar
  34. 34.
    Michaelis M, Geiler J, Naczk P et al (2011) Glycyrrhizin exerts antioxidative effects in H5N1 influenza A virus-infected cells and inhibits virus replication and pro-inflammatory gene expression. PLoS One 6:e19705CrossRefGoogle Scholar
  35. 35.
    Wolf MC, Freiberg AN, Zhang T et al (2010) A broad-spectrum antiviral targeting entry of enveloped viruses. Proc Natl Acad Sci Usa 107:3157–3162CrossRefGoogle Scholar
  36. 36.
    Root CN, Wills EG, McNair LL et al (2000) Entry of influenza viruses into cells is inhibited by a highly specific protein kinase C inhibitor. J Gen Virol 81:2697–2705CrossRefGoogle Scholar
  37. 37.
    Yeganeh B, Ghavami S, Kroeker AL et al (2015) Suppression of influenza A virus replication in human lung epithelial cells by noncytotoxic concentrations bafilomycin A1. Am J Physiol Lung Cell Mol Physiol 308:L270–L286CrossRefGoogle Scholar
  38. 38.
    Müller KH, Kainov DE, El Bakkouri K et al (2011) The proton translocation domain of cellular vacuolar ATPase provides a target for the treatment of influenza A virus infections. Br J Pharmacol 164:344–357CrossRefGoogle Scholar
  39. 39.
    Chen HW, Cheng JX, Liu MT et al (2013) Inhibitory and combinatorial effect of diphyllin, a v-ATPase blocker, on influenza viruses. Antivir. Res 99:371–382Google Scholar
  40. 40.
    Bimbo LM, Denisova OV, Mäkilä E et al (2013) Inhibition of influenza A virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles. ACS Nano 7:6884–6893CrossRefGoogle Scholar
  41. 41.
    Marcellin P, Gish RG, Gitlin N et al (2010) Safety and efficacy of viramidine versus ribavirin in ViSER2: randomized, double-blind study in therapynaive hepatitis C patients. J Hepatol 52:32–38CrossRefGoogle Scholar
  42. 42.
    Perwitasari O, Johnson S, Yan X et al (2014) Verdinexor, a novel selective inhibitor of nuclear export, reduces influenza a virus replication in vitro and in vivo. J Virol 88:10228–10243CrossRefGoogle Scholar
  43. 43.
    Zheng BJ, Chan KW, Lin YP et al (2008) Delayed antiviral plus immunomodulator treatment still reduces mortality in mice infected by high inoculum of influenza A/H5N1 virus. Proc Natl Acad Sci USA 105:8091–8096CrossRefGoogle Scholar
  44. 44.
    Mehrbod P, Omar AR, Hair-Bejo M et al (2014) Mechanisms of action and efficacy of statins against influenza. Biomed Res Int 2014:872370CrossRefGoogle Scholar
  45. 45.
    Frost FJ, Petersen H, Tollestrup K et al (2007) Influenza and COPD mortality protection as pleiotropic, dose-dependent effects of statins. Chest 131:1006–1012CrossRefGoogle Scholar
  46. 46.
    Rodrigo C, Leonardi-Bee J, Nguyen-Van-Tam J et al (2016) Corticosteroids as adjunctive therapy in the treatment of influenza. Cochrane Database Syst Rev 3:CD010406PubMedGoogle Scholar
  47. 47.
    Marsolais D, Hahm B, Walsh KB et al (2009) A critical role for the sphingosine analog AAL-R in dampening the cytokine response during influenza virus infection. Proc Natl Acad Sci Usa 106:1560–1565CrossRefGoogle Scholar
  48. 48.
    Walsh KB, Teijaro JR, Wilker PR et al (2011) Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc Natl Acad Sci Usa 108:12018–12023CrossRefGoogle Scholar
  49. 49.
    Teijaro JR, Walsh KB, Cahalan S et al (2011) Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146:980–991CrossRefGoogle Scholar
  50. 50.
    Zhang S, Tian H, Cui J et al (2016) The c‑Jun N‑terminal kinase (JNK) is involved in H5N1 influenza A virus RNA and protein synthesis. Arch Virol 161:345–351CrossRefGoogle Scholar
  51. 51.
    Mazur I, Wurzer WJ, Ehrhardt C et al (2007) Acetylsalicylic acid (ASA) blocks influenza virus propagation via its NFkappaB-inhibiting activity. Cell Microbiol 9:1683–1694CrossRefGoogle Scholar
  52. 52.
    Wiesener N, Zimmer C, Jarasch-Althof N et al (2011) Therapy of experimental influenza virus infection with pyrrolidine dithiocarbamate. Med Microbiol Immunol 200:115–126CrossRefGoogle Scholar
  53. 53.
    Ehrhardt C, Rückle A, Hrincius ER et al (2013) The NF-κB inhibitor SC75741 efficiently blocks influenza virus propagation and confers a high barrier for development of viral resistance. Cell Microbiol 15:1198–1211CrossRefGoogle Scholar
  54. 54.
    Haasbach E, Reiling SJ, Ehrhardt C et al (2013) The NF-kappaB inhibitor SC75741 protects mice against highly pathogenic avian influenza A virus. Antivir. Res 99:336–344Google Scholar
  55. 55.
    Pleschka S, Wolff T, Ehrhardt C et al (2001) Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nat Cell Biol 3:301–305CrossRefGoogle Scholar
  56. 56.
    Droebner K, Pleschka S, Ludwig S et al (2011) Antiviral activity of the MEKinhibitor U0126 against pandemic H1N1v and highly pathogenic avian influenza virus in vitro and in vivo. Antivir Res 92:195–203CrossRefGoogle Scholar
  57. 57.
    Choi MS, Heo J, Yi CM et al (2016) A novel p38 mitogen activated protein kinase (MAPK) specific inhibitor suppresses respiratory syncytial virus and influenza A virus replication by inhibiting virus-induced p38 MAPK activation. Biochem Biophys Res Commun 477:311–316CrossRefGoogle Scholar
  58. 58.
    Belongia EA, Simpson MD, King JP et al (2016) Variable influenza vaccine effectiveness by subtype: A systematic review and meta-analysis of test-negative design studies. Lancet Infect Dis 16(8):942–951CrossRefGoogle Scholar
  59. 59.
    DiazGranados CA, Dunning AJ, Kimmel M et al (2014) Efficacy of high-dose versus standard-dose influenza vaccine in older adults. N Engl J Med 371(7):635–645CrossRefGoogle Scholar
  60. 60.
    Shinde V, Fries L, Wu Y et al (2018) Improved titers against influenza drift variants with a nanoparticle vaccine. N Engl J Med 378(24):2346–2348CrossRefGoogle Scholar
  61. 61.
    Laursen NS, Friesen RHE, Zhu X et al (2018) Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin. Science 362(6414):598–602CrossRefGoogle Scholar
  62. 62.
    Kim SH, Hong SB, Yun SC et al (2011) Corticosteroid treatment in critically ill patients with pandemic influenza A/H1N1 2009 infection: Analytic strategy using propensity scores. Am J Respir Crit Care Med 183(9):1207–1214CrossRefGoogle Scholar
  63. 63.
    Moreno G, Rodríguez A, Reyes LF et al (2018) Corticosteroid treatment in critically ill patients with severe influenza pneumonia: a propensity score matching study. Intensive Care Med 44(9):1470–1482 (Sep)CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für Pneumologie und Deutsches Zentrum für LungenforschungMedizinische Hochschule HannoverHannoverDeutschland

Personalised recommendations