Advertisement

Der periphere Lungenherd – Moderne Diagnostik und potenzielle Therapie

  • Jane WinanteaEmail author
  • Kaid Darwiche
Leitthema
  • 57 Downloads

Zusammenfassung

Durch die steigende Anzahl an durchgeführten Thorax-Computertomographie(CT)-Untersuchungen in den letzten Jahren nimmt die Rate an zufällig entdeckten peripheren Lungenherden zu. Die frühe Diagnosestellung geht bei Lungenkarzinomen einher mit einer Verbesserung der Prognose dieser meist tödlich verlaufenden Erkrankung. Die diagnostische Sicherheit der Bronchoskopie mit konventionellen bioptischen Möglichkeiten (transbronchiale Zangenbiopsie unter Röntgendurchleuchtung) ist niedrig. Ein operatives Vorgehen sollte angestrebt werden, wenn kein begründeter Zweifel an der Malignität besteht und keine relevanten Komorbiditäten vorliegen. Bildgebende Verfahren, wie die 18F-Fluordeoxyglukose-Positronenemissionstomographie/Computertomographie (FDG-PET/CT) können die Dignität eines Herds nicht sicher klären und sind in dieser Situation wenig hilfreich. Die Verbesserung der diagnostischen Sicherheit durch eine histologische Sicherung, meist durch bronchoskopische Probeentnahme, sollte in dieser Situation geprüft werden. In den letzten Jahren wurden mehrere bronchoskopische Verfahren entwickelt, welche die diagnostische Sicherheit von peripheren Lungenherden deutlich erhöhen. Durch die verbesserte Erreichbarkeit der Herde kommt zukünftig die Möglichkeit einer bronchoskopischen Lokaltherapie in Betracht.

Schlüsselwörter

Peripherer Lungenherd Bronchialkarzinom Bronchoskopie Intervention Endoskopie 

Peripheral pulmonary nodules—modern diagnostics and potential treatment

Abstract

Due to the expanding use of computed tomography (CT) for thoracic imaging, in recent years the rate of incidentally detected pulmonary nodules has increased. The early diagnosis of lung cancer is crucial to improve survival of this mostly fatal disease. The diagnostic safety of bronchoscopy with conventional biopsy options (e.g. transbronchial forceps biopsy with fluoroscopy) for peripheral pulmonary nodule is poor. Surgical resection remains the gold standard and should be targeted if there is no reasonable doubt about the malignancy and there are no relevant comorbidities. Imaging techniques, such as 18F-fluorodeoxyglucose positron emission tomography CT (FDG-PET/CT) have a limited accuracy for clarification of the dignity of nodules and are therefore not very helpful in these cases. Improvement of the diagnostic certainty through histological confirmation, mostly by bronchoscopic sampling, should be strongly considered in such cases. In recent years, several bronchoscopic modalities have been developed to significantly increase the diagnostic certainty of peripheral pulmonary nodules. The improved accessibility of such nodules opens up the possibility of prospective local bronchoscopic treatment.

Keywords

Solitary pulmonary nodule Lung neoplasms Bronchoscopy Intervention Endoscopy 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

K. Darwiche: Honorare aus Referententätigkeit: Olympus, Boston Scientific, Broncus Medical, Erbe, Böhringer. Honorare für Beratertätigkeit: bess, Boston Scientific, Storz. Forschungsunterstützung: Pulmonx, PneumRx, Boston Scientific, Nuveira, Epigenomics, Broncus, Novartis, Roche. J. Winantea gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Ali MS, Trick W, Mba BI et al (2017) Radial endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions: a systematic review and meta-analysis. Respirology 22:443–453PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Arimura K, Tagaya E, Akagawa H et al (2019) Cryobiopsy with endobronchial ultrasonography using a guide sheath for peripheral pulmonary lesions and DNA analysis by next generation sequencing and rapid on-site evaluation. Respir Investig 57:150–156PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Asano F, Matsuno Y, Tsuzuku A et al (2008) Diagnosis of peripheral pulmonary lesions using a bronchoscope insertion guidance system combined with endobronchial ultrasonography with a guide sheath. Lung Cancer 60:366–373PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Asano F, Shinagawa N, Ishida T et al (2015) Virtual bronchoscopic navigation improves the diagnostic yield of radial-endobronchial ultrasound for peripheral pulmonary lesions with involved bronchi on CT. Intern Med 54:1021–1025PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Baaklini WA, Reinoso MA, Gorin AB et al (2000) Diagnostic yield of fiberoptic bronchoscopy in evaluating solitary pulmonary nodules. Chest 117:1049–1054PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Behzadi A, Ung Y, Lowe V et al (2009) The role of positron emission tomography in the management of non-small cell lung cancer. Can J Surg 52:235–242PubMedPubMedCentralGoogle Scholar
  7. 7.
    Casal RF, Sarkiss M, Jones AK et al (2018) Cone beam computed tomography-guided thin/ultrathin bronchoscopy for diagnosis of peripheral lung nodules: a prospective pilot study. J Thorac Dis 10:6950–6959PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Chen AC, Gillespie CT (2018) Robotic endoscopic airway challenge: REACH assessment. Ann Thorac Surg 106:293–297PubMedCrossRefGoogle Scholar
  9. 9.
    Chen KC, Lee JM (2018) Photodynamic therapeutic ablation for peripheral pulmonary malignancy via electromagnetic navigation bronchoscopy localization in a hybrid operating room (OR): a pioneering study. J Thorac Dis 10:S725–S730PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Dibardino DM, Lanfranco AR, Haas AR (2016) Bronchoscopic cryotherapy. Clinical applications of the cryoprobe, cryospray, and cryoadhesion. Ann Am Thorac Soc 13:1405–1415PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Diez-Ferrer M, Gil D, Tebe C et al (2018) Positive airway pressure to enhance computed tomography imaging for airway segmentation for virtual bronchoscopic navigation. Respiration 96:525–534PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Drumm O, Joyce EA, De Blacam C et al (2019) CT-guided lung biopsy: effect of biopsy-side down position on pneumothorax and chest tube placement. Radiology 292(1):190–196.  https://doi.org/10.1148/radiol.2019182321 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Eberhardt R, Anantham D, Ernst A et al (2007) Multimodality bronchoscopic diagnosis of peripheral lung lesions: a randomized controlled trial. Am J Respir Crit Care Med 176:36–41PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Eberhardt R, Gompelmann D, Herth FJ (2011) Endoscopy of peripheral lung nodule. Pneumologie 65:745–750PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ferguson JS, Henne E (2019) Bronchoscopically delivered thermal vapor ablation of human lung lesions. J Bronchology Interv Pulmonol 26:108–113PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Folch EE, Pritchett MA, Nead MA et al (2019) Electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: one-year results of the prospective, multicenter NAVIGATE study. J Thorac Oncol 14:445–458PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Fuchs FS, Zirlik S, Hildner K et al (2013) Confocal laser endomicroscopy for diagnosing lung cancer in vivo. Eur Respir J 41:1401–1408PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Fujimoto JG, Brezinski ME, Tearney GJ et al (1995) Optical biopsy and imaging using optical coherence tomography. Nat Med 1:970–972PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Gildea TR, Mazzone PJ, Karnak D et al (2006) Electromagnetic navigation diagnostic bronchoscopy: a prospective study. Am J Respir Crit Care Med 174:982–989PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Hariri LP, Adams DC, Applegate MB et al (2019) Distinguishing tumor from associated fibrosis to increase diagnostic biopsy yield with polarization-sensitive optical coherence tomography. Clin Cancer Res.  https://doi.org/10.1158/1078-0432.CCR-19-0566 CrossRefPubMedGoogle Scholar
  21. 21.
    Harms W, Krempien R, Grehn C et al (2006) Electromagnetically navigated brachytherapy as a new treatment option for peripheral pulmonary tumors. Strahlenther Onkol 182:108–111PubMedCrossRefGoogle Scholar
  22. 22.
    Hassan T, Thiberville L, Hermant C et al (2017) Assessing the feasibility of confocal laser endomicroscopy in solitary pulmonary nodules for different part of the lungs, using either 0.6 or 1.4 mm probes. PLoS ONE 12:e189846PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Henne E, Ferguson JS, Mest R et al (2015) Thermal vapor ablation for lung lesions in a porcine model. Respiration 90:146–154PubMedCrossRefGoogle Scholar
  24. 24.
    Herth FJ, Eberhardt R, Sterman D et al (2015) Bronchoscopic transparenchymal nodule access (BTPNA): first in human trial of a novel procedure for sampling solitary pulmonary nodules. Thorax 70:326–332PubMedCrossRefGoogle Scholar
  25. 25.
    Ishida T, Asano F, Yamazaki K et al (2011) Virtual bronchoscopic navigation combined with endobronchial ultrasound to diagnose small peripheral pulmonary lesions: a randomised trial. Thorax 66:1072–1077PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Jiang B, Mcclure MA, Chen T et al (2018) Efficacy and safety of thermal ablation of lung malignancies: a network meta-analysis. Ann Thorac Med 13:243–250PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kikuchi E, Yamazaki K, Sukoh N et al (2004) Endobronchial ultrasonography with guide-sheath for peripheral pulmonary lesions. Eur Respir J 24:533–537PubMedCrossRefGoogle Scholar
  28. 28.
    Kobayashi T, Kaneko M, Sumi M et al (2000) CT-assisted transbronchial brachytherapy for small peripheral lung cancer. Jpn J Clin Oncol 30:109–112PubMedCrossRefGoogle Scholar
  29. 29.
    Koizumi T, Tsushima K, Tanabe T et al (2015) Bronchoscopy-guided cooled radiofrequency ablation as a novel intervention therapy for peripheral lung cancer. Respiration 90:47–55PubMedCrossRefGoogle Scholar
  30. 30.
    Lamprecht B, Porsch P, Wegleitner B et al (2012) Electromagnetic navigation bronchoscopy (ENB): increasing diagnostic yield. Respir Med 106:710–715PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Lau K, Spiers A, Pritchett M et al (2018) P1.05-06 bronchoscopic image-guided microwave ablation of peripheral lung tumours - early results. J Thorac Oncol 13:S542CrossRefGoogle Scholar
  32. 32.
    Li J, Quirk BC, Noble PB et al (2017) Flexible needle with integrated optical coherence tomography probe for imaging during transbronchial tissue aspiration. J Biomed Opt 22:1–5PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Murgu SD (2019) Robotic assisted-bronchoscopy: technical tips and lessons learned from the initial experience with sampling peripheral lung lesions. BMC Pulm Med 19:89PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    National Lung Screening Trial Research Team, Aberle DR, Adams AM et al (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365:395–409CrossRefGoogle Scholar
  35. 35.
    Nekolla EA, Schegerer AA, Griebel J et al (2017) Frequency and doses of diagnostic and interventional Xray applications : trends between 2007 and 2014. Radiologe 57:555–562PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Oki M, Saka H, Ando M et al (2015) Ultrathin bronchoscopy with multimodal devices for peripheral pulmonary lesions. A randomized trial. Am J Respir Crit Care Med 192:468–476PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ravaglia C, Wells AU, Tomassetti S et al (2019) Diagnostic yield and risk/benefit analysis of trans-bronchial lung cryobiopsy in diffuse parenchymal lung diseases: a large cohort of 699 patients. BMC Pulm Med 19:16PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Rojas-Solano JR, Ugalde-Gamboa L, Machuzak M (2018) Robotic bronchoscopy for diagnosis of suspected lung cancer: a feasibility study. J Bronchology Interv Pulmonol 25:168–175PubMedPubMedCentralGoogle Scholar
  39. 39.
    Schuhmann M, Bostanci K, Bugalho A et al (2014) Endobronchial ultrasound-guided cryobiopsies in peripheral pulmonary lesions: a feasibility study. Eur Respir J 43:233–239PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Seijo LM, De Torres JP, Lozano MD et al (2010) Diagnostic yield of electromagnetic navigation bronchoscopy is highly dependent on the presence of a bronchus sign on CT imaging: results from a prospective study. Chest 138:1316–1321PubMedCrossRefGoogle Scholar
  41. 41.
    Sterman DH, Keast T, Rai L et al (2015) High yield of bronchoscopic transparenchymal nodule access real-time image-guided sampling in a novel model of small pulmonary nodules in canines. Chest 147:700–707PubMedCrossRefGoogle Scholar
  42. 42.
    Su Z, Zhong C, Li S et al (2017) Needle-based confocal laser endomicroscopy in the diagnosis of peripheral pulmonary nodule: a preliminary report. J Thorac Dis 9:2608–2612PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Taton O, Bondue B, Gevenois PA et al (2018) Diagnostic yield of combined pulmonary cryobiopsies and electromagnetic navigation in small pulmonary nodules. Pulm Med 2018:6032974PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Thiberville L, Salaun M (2010) Bronchoscopic advances: on the way to the cells. Respiration 79:441–449PubMedCrossRefGoogle Scholar
  45. 45.
    Walter JE, Heuvelmans MA, De Jong PA et al (2016) Occurrence and lung cancer probability of new solid nodules at incidence screening with low-dose CT: analysis of data from the randomised, controlled NELSON trial. Lancet Oncol 17:907–916PubMedCrossRefGoogle Scholar
  46. 46.
    Wijmans L, Yared J, De Bruin DM et al (2019) Needle-based confocal laser endomicroscopy for real-time diagnosing and staging of lung cancer. Eur Respir J 53(6):1801520.  https://doi.org/10.1183/13993003.01520-2018 CrossRefPubMedGoogle Scholar
  47. 47.
    Wright AS, Sampson LA, Warner TF et al (2005) Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology 236:132–139PubMedCrossRefGoogle Scholar
  48. 48.
    Zheng X, Yang C, Zhang X et al (2019) The cryoablation for peripheral pulmonary lesions using a novel flexible bronchoscopic cryoprobe in the ex vivo pig lung and liver. Respiration 97:457–462PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für Pneumologie, Sektion Interventionelle BronchologieUniversitätsmedizin Essen, RuhrlandklinikEssenDeutschland

Personalised recommendations