Advertisement

Der Pneumologe

, Volume 15, Issue 5, pp 299–308 | Cite as

Eosinophile Granulozyten

Physiologische und pathophysiologische Funktionen
  • C. Kroegel
  • M. Foerster
  • A. Moeser
  • H. Slevogt
  • U. Costabel
Leitthema
  • 156 Downloads

Zusammenfassung

Seit seiner Entdeckung im Jahr 1879 durch Paul Ehrlich fasziniert und inspiriert der eosinophile Granulozyt Ärzte wie Wissenschaftler. In den letzten Jahren ist mit der Verfügbarkeit von Interleukin-5-Blockern das Interesse noch weiter gestiegen. Während die Zelle bei physiologischen Prozessen keine Rolle spielt, kommt ihr im Rahmen bestimmter infektiöser oder immunologischer Prozesse eine zentrale Bedeutung zu. Einerseits ist der Eosinophile bei der angeborenen Immunantwort gegen bestimmte Pathogene beteiligt, insbesondere bei Parasitosen. Auf der anderen Seite induziert die Zelle bei anderen Erkrankungen über die Freisetzung basischer Granulaproteine und reaktiver Sauerstoffspezies eine lokale Entzündung mit Nekrose des infiltrierten Gewebes. Darüber hinaus sind Eosinophile an der lokalen Gewebehomöostase und an der Modulation erworbener Immunreaktionen über Bildung und Freisetzung von verschiedensten Lipidmediatoren, Chemokinen, Zytokinen und Wachstumsfaktoren beteiligt. Diese Übersicht stellt die Morphologie, Zellbestandteile, Oberflächenantigene und Effektormechanismen der Eosinophilen in Bezug zu ihrer pathogenetischen Bedeutung im Rahmen von Eosinophilen-assoziierten Erkrankungen dar.

Schlüsselwörter

Eosinophile Zellstrukturen Zellbestandteile Effektormechanismen Eosinophile Granulaproteine 

Abkürzungen

CCL

CC-Chemokinligand

CCR

CC-Chemokinrezeptor

CXCL

CXC-Chemokinligand

CXCR

CXC-Chemokinrezeptor

ECP

„Eosinophil cationic protein“

EDN

„Eosinophil-derived neurotoxin“

EE

Eosinophile Ösophagitis

EGID

Eosinophilenassoziierte gastrointestinale Erkrankung

EGPA

Eosinophile Granulomatose mit Polyangiitis

EPO

Eosinophile Peroxidase

GM-CSF

„Granulocyte-macrophage colony-stimulating factor“

IL

Interleukin

MBP

„Major basic protein“

PAF

„Platelet-activating factor“

PG

Prostaglandine

SCF

„Stem cell factor“

TGF

„Transforming growth factor“

TNF

„Tumor necrosis factor“

Tx

Thromboxan

Eosinophilic granulocytes

Physiological and pathophysiological functions

Abstract

Ever since its discovery in 1879 by Paul Ehrlich the eosinophil has fascinated and inspired clinicians and scientists alike. In recent years, interest in eosinophils has dramatically increased with the availability of interleukin-5 blockers. Although eosinophils do not seem to play an essential role in physiological processes, their numbers are markedly raised in certain pathological conditions, such as certain infectious and immunological diseases. Functionally, eosinophils play a role in the innate host defence against pathogens, particularly parasites. On the other hand, the cells may damage both pathogens and host cells through the release of basic granule proteins and reactive oxygen species. In addition, eosinophils are involved in local tissue homeostasis and modulation of adaptive immune responses through the production and release of various lipid mediators, chemokines, cytokines, and growth factors. This review summarizes the cell morphology and components, surface antigens, as well as effector mechanisms of eosinophils with respect to their pathogenic significance in eosinophil-related diseases.

Keywords

Eosinophils Cellular structures Cell components Effector mechanisms Eosinophil granule proteins 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Kroegel, M. Foerster, A. Moeser, H. Slevogt und U. Costabel geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Acharya KR, Ackermann SJ (2014) Eosinophil granule proteins: form and function. J Biol Chem 289:17406–17415CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chen YY, Khoury P, Ware JM, Holland-Thomas NC, Stoddard JL, Gurprasad S, Waldner AJ, Klion AD (2014) Marked and persistent eosinophilia in the absence of clinical manifestations. J Allergy Clin Immunol 133:1195–1202CrossRefPubMedGoogle Scholar
  3. 3.
    Chu VT et al (2011) Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol 12:151–159CrossRefPubMedGoogle Scholar
  4. 4.
    Davoine F, Lacy P (2014) Eosinophil cytokines, chemokines, and growth factors: emerging roles in immunity. Front Immunol. Acta Neurochir (Wien) 5:570Google Scholar
  5. 5.
    Ehrlich P (1879) Ueber die spezifischen Granulationen des Blutes. Archiv für Anatomie und Physiologie. Physiologische Abteilung, S 571–579Google Scholar
  6. 6.
    Fukuda T, Fukushima Y, Numao T, Ando N et al (1996) Role of interleukin-4 and vascular cell adhesion molecule-1 in selective eosinophil migration into the airways in allergic asthma. Am J Respir Cell Mol Biol 14:84–94CrossRefPubMedGoogle Scholar
  7. 7.
    Furuta GT et al (2005) Eosinophils alter colonic epithelial barrier function: role for major basic protein. Am J Physiol Gastrointest Liver Physiol 289:G890–G897. [PubMed: 16227527]CrossRefPubMedGoogle Scholar
  8. 8.
    Fulkerson P, Rothenberg M (2013) Targeting eosinophils in allergy, inflammation and beyond. Nat Rev Drug Discov 12:117–129CrossRefPubMedGoogle Scholar
  9. 9.
    Gleich GJ, Adolphson CR (1986) The eosinophilic leukocyte: structure and function. Adv Immunol 39:177–253CrossRefPubMedGoogle Scholar
  10. 10.
    Gleich GJ (2013) Historical overview and perspective on the role of the eosinophil in health and disease. In: Lee JJ, Rosenburg HF (Hrsg) Eosinophils in Health and Disease. Academic Press, Waltham, Mass, USA, S 1–12Google Scholar
  11. 11.
    Gouon-Evans V, Rothenberg ME, Pollard JW (2000) Postnatal mammary gland development requires macrophages and eosinophils. Development 127:2269–2282PubMedGoogle Scholar
  12. 12.
    Hastie AT, Moore WC, Li H, Rector BM et al (2013) Biomarker surrogates do not accurately predict sputum eosinophil and neutrophil percentages in asthmatic subjects. J Allergy Clin Immunol 132:72–80CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hogan SP, Rosenberg HF, Moqbel R et al (2008) Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 38:709–750CrossRefPubMedGoogle Scholar
  14. 14.
    Humbles A, Lloyd C, McMillan S, Friend D et al (2004) A critical role for eosinophils in allergic airways remodeling. Science 305:1776–1779CrossRefPubMedGoogle Scholar
  15. 15.
    Kargili A, Bavbek N, Kaya A, Koşar A, Karaaslan Y (2004) Eosinophilia in rheumatologic diseases: a prospective study of 1000 cases. Rheumatol Int 24:321–324CrossRefPubMedGoogle Scholar
  16. 16.
    Kay A (2014) The early history of the eosinophil. Clin Exper Allergy. Acta Neurochir (Wien) 45:575:582Google Scholar
  17. 17.
    Khoury P, Grayson PC, Klion AD (2014) Eosinophils in vasculitis: characteristics and roles in pathogenesis. Nat Rev Rheumatol 10:474–483CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Eosinophils KH (2013) multifunctional and distinctive properties. Int Arch Allergy Immunol 161(Suppl 2):3–9Google Scholar
  19. 19.
    Kroegel C, Dewer A, Yukawa T et al (1993) Ultrstructural characterization of platelet-stimulated human eosinophils from patients with asthma. Clin Sci 84:391–399CrossRefPubMedGoogle Scholar
  20. 20.
    Kroegel C, Luttmann W, Zeck-Kapp G et al (1994) Zellbiologie und Funktion des eosinophilen Granulozyten im Rahmen der immunologischen Entzündung. Immun Infekt 22:104–113PubMedGoogle Scholar
  21. 21.
    Kroegel C (2014) Costabel U. Klinische Pneumologie. Das Referenzwerk für Klinik und Praxis. Thieme, StuttgartGoogle Scholar
  22. 22.
    Kroegel C, Foerster M, Seeliger B, Slevogt H, Costabel U, Neumann T (2017) Eosinophile Granulomatose und Polyangiitis (EGPA, Churg-Strauss-Syndrom) - Pathogenetische und klinische Grundlagen, Diagnostik und Behandlungszugänge. Arzneimitteltherapie 35:413–426Google Scholar
  23. 23.
    Kroegel C, Foerster M, Quickert S, Slevogt H, Neumann T (2018) Vaskulitiden und eosinophile Lungenerkrankungen. Pneumologe 15:55–71CrossRefGoogle Scholar
  24. 24.
    Lewis R, Soter N, Diamond P et al (1982) Prostaglandin D2 generation after activation of rat and human mast cells with anti-IgE. J Immunol 129:1627–1631PubMedGoogle Scholar
  25. 25.
    Luijk B, Lindemans C, Kanters D, van der Heijde R et al (2005) Gradual increase in priming of human eosinophils during extravasation from peripheral blood to the airways in response to allergen challenge. J Allergy Clin Immunol 115:997–1003CrossRefPubMedGoogle Scholar
  26. 26.
    Marzano AV, Tedeschi A, Rossio R, Fanoni D, Cugno M (2010) Prothrombotic state in Churg-Strauss syndrome: a case report. J Investig Allergol Clin Immunol 20:616–619PubMedGoogle Scholar
  27. 27.
    Mesquita-Santos F, Vieira-de-Abreu A, Calheiros A et al (2006) Cutting edge: prostaglandin D2 enhances leukotriene C4 synthesis by eosinophils during allergic inflammation: synergistic in vivo role of endogenous eotaxin. J Immunol 176:1326–1330CrossRefPubMedGoogle Scholar
  28. 28.
    Mishra A, Hogan SP, Lee JJ, Foster PS, Rothenberg ME (1999) Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J Clin Invest 103:1719–1727CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mutalithas K, Guillen C, Day C, Brightling C Pavord I, Wardlaw A (2010) CRTH2 expression on T cells in asthma. Clin Exp Immunol 161:34–40PubMedPubMedCentralGoogle Scholar
  30. 30.
    Navarro S, Aleu J, Jimenez M, Boix E, Cuchillo C, Nogues M (2008) The cytotoxicity of eosinophil cationic protein/ribonuclease 3 on eukaryotic cell lines takes place through its aggregation on the cell membrane. Cell Mol Life Sci 65:324–337CrossRefPubMedGoogle Scholar
  31. 31.
    McNagny K, Graf T (2002) Making eosinophils through subtle shifts in transcription factor expression. J Exp Med 195:F43–F47. PMC:2193544MCrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Minshall EM, Leung DY, Martin RJ et al (1997) Eosinophil-associated TGF-beta1 mRNA expression and airways fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 17(3):326–333CrossRefPubMedGoogle Scholar
  33. 33.
    Patel K (1989) Eosinophil tethering to interleukin-4-activated endothelial cells requires both P‑selectin and vascular cell adhesion molecule-1. Blood 92:3904–3911Google Scholar
  34. 34.
    Roufosse FE, Kahn JE, Gleich GJ et al (2013) Long-term safety of mepolizumab for the treatment of hypereosinophilic syndromes. J Allergy Clin Immunol 131:461-7:e1–5Google Scholar
  35. 35.
    Robertson SA, Mau VJ, Hudson SN, Tremellen KP (1997) Cytokine-leukocyte networks and the establishment of pregnancy. Am J Reprod Immunol 37:438–442CrossRefPubMedGoogle Scholar
  36. 36.
    Rothenberg ME, Hogan SP (2006) The Eosinophil. Annu Rev Immunol 24:147–174CrossRefPubMedGoogle Scholar
  37. 37.
    Rothenberg ME, Klion AD, Roufosse FE, Kahn JE, Weller PF, Simon HU et al (2008) Treatment of patients with the hypereosinophilic syndrome with mepolizumab. N Engl J Med 358:1215–1228CrossRefPubMedGoogle Scholar
  38. 38.
    Samter M (1980) Eosinophils: the first 90 years. In: Mahmoud AAF, Austen KF (Hrsg) The Eosinophil in Health and Disease. Grune and Stratton, New York, S 25–43Google Scholar
  39. 39.
    Smit J, Lukacs N (2006) A closer look at chemokines and their role in asthmatic responses. Eur J Pharmacol 533:277–288CrossRefPubMedGoogle Scholar
  40. 40.
    Spector SL, Tan RA (2012) Is a single blood eosinophil count a reliable marker for “eosinophilic asthma?”. J Asthma 49:807–810CrossRefPubMedGoogle Scholar
  41. 41.
    Spencer LA, Bonjour K, Melo RC, Weller PF (2014) Oct 27;5:496. Eosinophil secretion of granule-derived cytokines. Front Immunol, Bd. 2014.  https://doi.org/10.3389/fimmu.2014.00496 CrossRefGoogle Scholar
  42. 42.
    Eosinophils SCJF (1988) A Comprehensive Review and Guide to the Scientific and Medical Literature. Oxford. Oxford Medical, PublicationsGoogle Scholar
  43. 43.
    Symon F, Lawrence M, Williamson M, Walsh G, Watson S, Wardlaw A (1996) Functional and structural characterization of the eosinophil P‑selectin ligand. J Immunol 157:1711–1719PubMedGoogle Scholar
  44. 44.
    Szefler SJ, Wenzel S, Brown R et al (2012) Asthma outcomes: biomarkers. J Allergy Clin Immunol 129(3 Suppl):S9–S23CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Varricchi G, Bagnasco D, Borriello F, Heffler E, Canonica GW (2016) Interleukin-5 pathway inhibition in the treatment of eosinophilic respiratory disorders: evidence and unmet needs. Curr Opin Allergy Clin Immunol 16:186–200CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Walsh JC et al (2002) Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity 17:665–676CrossRefPubMedGoogle Scholar
  47. 47.
    Wardlaw AJ (1999) Molecular basis for selective eosinophil trafficking in asthma: a mulitstep paradigm. J Allergy Clin Immunol 104:917–926CrossRefPubMedGoogle Scholar
  48. 48.
    Winkel P, Statland BE, Saunders AM, Osborn H, Kupperman H (1981) Within-day physiologic variation of leukocyte types in healthy subjects as assayed by two automated leukocyte differential analyzers. Am J Clin Pathol 75:693–700CrossRefPubMedGoogle Scholar
  49. 49.
    Yousefi S, Hemmann S, Weber M et al (1995) IL-8 is expressed by human peripheral blood eosinophils. Evidence for increased secretion in asthma. J Immunol 154:5481–5490PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • C. Kroegel
    • 1
  • M. Foerster
    • 1
  • A. Moeser
    • 1
  • H. Slevogt
    • 2
  • U. Costabel
    • 3
  1. 1.Abt. Pneumologie & Allergologie/Immunologie, Medizinische Klinik IUniversitätsklinikum JenaJenaDeutschland
  2. 2.AG Host SeptomicsUniversitätsklinikum JenaJenaDeutschland
  3. 3.Ruhrlandklinik, Westdeutsches Lungenzentrum am Universitätsklinikum Essen gGmbHUniversitätsklinikEssenDeutschland

Personalised recommendations