Advertisement

Convection–diffusion molecular transport in a microfluidic bilayer device with a porous membrane

  • Timothy S. FrostEmail author
  • Victor Estrada
  • Linan Jiang
  • Yitshak Zohar
Research Paper
  • 104 Downloads

Abstract

The field of human cell research is rapidly changing due to the introduction of microphysiological systems, which commonly feature two stacked microchannels separated by a porous membrane for in vitro barrier modeling. An essential component to adequately representing a subset of human organ or tissue functions in these microfluidic systems is the concentration distribution of the biospecies involved. In particular, when different cell types are cultured, a delicate balance between media mixing and cellular signaling is required for long-term maintenance of the cellular co-culture. In this work, we experimentally measured the effects of various control parameters on the transient and steady average molecular concentration at the bilayer device outlet. Using these experimental results for validation, we then numerically investigated the concentration distributions due to the convection–diffusion mass transport in both microchannels. The effects of media flow rate, separation membrane porosity, molecular size, microchannel dimensions and flow direction have been systematically characterized. The transient response is found to be negligible for cell co-cultures lasting several days, while the steady-state concentration distribution is dominated by the media flow rate and separation membrane porosity. Numerically computed concentration profiles reveal self-similarity characteristics featuring a diffusive boundary layer, which can be manipulated for successful maintenance of cell co-culture with limited media mixing and enhanced cell signaling.

Keywords

Microfluidic bilayer device Convection–diffusion mass transport Molecular concentration distribution 

Notes

Acknowledgements

This work was supported by the Arizona Biomedical Research Commission through Grant ABRC ADHS14-082983, and a NASA Space Grant Undergraduate Internship.

References

  1. Chung BG, Choo J (2010) Microfluidic gradient platforms for controlling cellular behavior. Electrophoresis 31:3014–3027.  https://doi.org/10.1002/elps.201000137 CrossRefGoogle Scholar
  2. Dichamp J, De Gournay F, Plouraboué F (2017) Theoretical and numerical analysis of counter-flow parallel convective exchangers considering axial diffusion. Int J Heat Mass Transf 107:154–167.  https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.019 CrossRefGoogle Scholar
  3. Edington CD, Chen WLK, Geishecker E et al (2018) Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci Rep 8:4530.  https://doi.org/10.1038/s41598-018-22749-0 CrossRefGoogle Scholar
  4. Erickson HP (2009) Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online 11:32–51.  https://doi.org/10.1007/s12575-009-9008-x CrossRefGoogle Scholar
  5. Esch MB, Sung JH, Yang J et al (2012) On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic ‘body-on-a-chip’ devices. Biomed Microdevice 14:895–906.  https://doi.org/10.1007/s10544-012-9669-0 CrossRefGoogle Scholar
  6. Even-Ram S, Yamada KM (2005) Cell migration in 3D matrix. Curr Opin Cell Biol 17:524–532.  https://doi.org/10.1016/j.ceb.2005.08.015 CrossRefGoogle Scholar
  7. Foster KA, Oster CG, Mayer MM et al (1998) Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res 243:359–366.  https://doi.org/10.1006/excr.1998.4172 CrossRefGoogle Scholar
  8. Glover K, Strang J, Lubansky A (2014) Characterising the effect of geometry on a microchamber for producing controlled concentration gradients. Chem Eng Sci 117:389–395.  https://doi.org/10.1016/j.ces.2014.06.045 CrossRefGoogle Scholar
  9. Heyman NS, Burt JM (2008) Hindered diffusion through an aqueous pore describes invariant dye selectivity of Cx43 junctions. Biophys J 94:840–854.  https://doi.org/10.1529/biophysj.107.115634 CrossRefGoogle Scholar
  10. Hubatsch I, Ragnarsson EGE, Artursson P (2007) Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc 2:2111–2119.  https://doi.org/10.1038/nprot.2007.303 CrossRefGoogle Scholar
  11. Huh D, Matthews BD, Mammoto A et al (2010) Reconstituting organ-level lung functions on a chip. Science (New York, NY) 328:1662–1668.  https://doi.org/10.1126/science.1188302 CrossRefGoogle Scholar
  12. Huh D, Leslie DC, Matthews BD et al (2012) A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4:159ra147.  https://doi.org/10.1126/scitranslmed.3004249 CrossRefGoogle Scholar
  13. Inamdar NK, Griffith LG, Borenstein JT (2011) Transport and shear in a microfluidic membrane bilayer device for cell culture. Biomicrofluidics 5:022213.  https://doi.org/10.1063/1.3576925 CrossRefGoogle Scholar
  14. Jain LNR (1984) Extravascular diffusion in normal and neoplastic tissues. Can Res 44:238–244Google Scholar
  15. Jang K-J, Suh K-Y (2010) A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10:36–42.  https://doi.org/10.1039/b907515a CrossRefGoogle Scholar
  16. Kim M-C, Lam RHW, Thorsen T, Asada HH (2013) Mathematical analysis of oxygen transfer through polydimethylsiloxane membrane between double layers of cell culture channel and gas chamber in microfluidic oxygenator. Microfluid Nanofluid 15:285–296.  https://doi.org/10.1007/s10404-013-1142-8 CrossRefGoogle Scholar
  17. Kim M, Jia M, Kim Y, Kim T (2014) Rapid and accurate generation of various concentration gradients using polydimethylsiloxane-sealed hydrogel device. Microfluid Nanofluid 16:645–654.  https://doi.org/10.1007/s10404-013-1265-y CrossRefGoogle Scholar
  18. Kimura H, Sakai Y, Fujii T (2018) Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab Pharmacokinet 33:43–48.  https://doi.org/10.1016/j.dmpk.2017.11.003 CrossRefGoogle Scholar
  19. Kinsey ST, Locke BR, Dillaman RM (2011) Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle. J Exp Biol 214:263–274.  https://doi.org/10.1242/jeb.047985 CrossRefGoogle Scholar
  20. Li Y-J, Cao T, Qin K-R (2018) Transmission of dynamic biochemical signals in the shallow microfluidic channel: nonlinear modulation of the pulsatile flow. Microfluid Nanofluid 22:81.  https://doi.org/10.1007/s10404-018-2097-6 CrossRefGoogle Scholar
  21. Lipowsky H (1995) Shear stress in the circulation. Flow Depend Regul Vasc Funct SE 2:28–45.  https://doi.org/10.1007/978-1-4614-7527-9_2 CrossRefGoogle Scholar
  22. Manneschi C, Pereira RC, Marinaro G et al (2016) A microfluidic platform with permeable walls for the analysis of vascular and extravascular mass transport. Microfluid Nanofluid 20:113.  https://doi.org/10.1007/s10404-016-1775-5 CrossRefGoogle Scholar
  23. Marx U, Walles H, Hoffmann S et al (2012) ‘Human-on-a-chip’ developments: a translational cutting-edge alternative to systemic safety assessment and efficiency evaluation of substances in laboratory animals and man? Altern Lab Anim 40:235–257CrossRefGoogle Scholar
  24. Merchuk JC (1991) Shear effects on suspended cells. Bioreactor systems and effects. Springer, Berlin, pp 65–95CrossRefGoogle Scholar
  25. Metallo CM, Vodyanik MA, De Pablo JJ et al (2008) The response of human embryonic stem cell-derived endothelial cells to shear stress. Biotechnol Bioeng 100:830–837.  https://doi.org/10.1002/bit.21809 CrossRefGoogle Scholar
  26. Pisani L (2011) Simple expression for the tortuosity of porous media. Transp Porous Media 88:193–203.  https://doi.org/10.1007/s11242-011-9734-9 MathSciNetCrossRefGoogle Scholar
  27. Ramji R, Roy P (2013) Microfluidic bolus induced gradient generator for live cell signalling. Microfluid Nanofluid 15:99–107.  https://doi.org/10.1007/s10404-012-1125-1 CrossRefGoogle Scholar
  28. Ravetto A, Hoefer IE, den Toonder JMJ, Bouten CVC (2016) A membrane-based microfluidic device for mechano-chemical cell manipulation. Biomed Microdevice 18:31.  https://doi.org/10.1007/s10544-016-0040-8 CrossRefGoogle Scholar
  29. Riahi R, Yang YL, Kim H et al (2014) A microfluidic model for organ-specific extravasation of circulating tumor cells. Biomicrofluidics.  https://doi.org/10.1063/1.4868301 CrossRefGoogle Scholar
  30. Rotenberg MY, Ruvinov E, Armoza A, Cohen S (2012) A multi-shear perfusion bioreactor for investigating shear stress effects in endothelial cell constructs. Lab Chip 12:2696–2703.  https://doi.org/10.1039/c2lc40144d CrossRefGoogle Scholar
  31. Ruiz A, Joshi P, Mastrangelo R et al (2014) Testing Aβ toxicity on primary CNS cultures using drug-screening microfluidic chips. Lab Chip 14:2860–2866.  https://doi.org/10.1039/c4lc00174e CrossRefGoogle Scholar
  32. Sakolish CM, Esch MB, Hickman JJ et al (2016) Modeling barrier tissues in vitro: methods, achievements, and challenges. EBioMedicine 5:30–39.  https://doi.org/10.1016/j.ebiom.2016.02.023 CrossRefGoogle Scholar
  33. Salomon JJ, Muchitsch VE, Gausterer JC et al (2014) The cell line NCl-H441 is a useful in vitro model for transport studies of human distal lung epithelial barrier. Mol Pharm 11:995–1006.  https://doi.org/10.1021/mp4006535 CrossRefGoogle Scholar
  34. Sellgren KL, Butala EJ, Gilmour BP et al (2014) A biomimetic multicellular model of the airways using primary human cells. Lab Chip.  https://doi.org/10.1039/c4lc00552j CrossRefGoogle Scholar
  35. Siyan W, Feng Y, Lichuan Z et al (2009) Application of microfluidic gradient chip in the analysis of lung cancer chemotherapy resistance. J Pharm Biomed Anal 49:806–810.  https://doi.org/10.1016/j.jpba.2008.12.021 CrossRefGoogle Scholar
  36. Song K-Y, Zhang H, Zhang W-J, Teixeira A (2018) Enhancement of the surface free energy of PDMS for reversible and leakage-free bonding of PDMS–PS microfluidic cell-culture systems. Microfluid Nanofluid 22:135.  https://doi.org/10.1007/s10404-018-2152-3 CrossRefGoogle Scholar
  37. Sun J, Liu W, Li Y et al (2017) An on-chip cell culturing and combinatorial drug screening system. Microfluid Nanofluid 21:125.  https://doi.org/10.1007/s10404-017-1959-7 CrossRefGoogle Scholar
  38. Volpatti LR, Yetisen AK (2014) Commercialization of microfluidic devices. Trends Biotechnol 32:347–350.  https://doi.org/10.1016/j.tibtech.2014.04.010 CrossRefGoogle Scholar
  39. Waghmare PR, Mitra SK (2012) A comprehensive theoretical model of capillary transport in rectangular microchannels. Microfluid Nanofluid 12:53–63.  https://doi.org/10.1007/s10404-011-0848-8 CrossRefGoogle Scholar
  40. Wikswo JP, Curtis EL, Eagleton ZE et al (2013) Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip 13:3496–3511.  https://doi.org/10.1097/MPG.0b013e3181a15ae8.Screening CrossRefGoogle Scholar
  41. Winton HL, Wan H, Cannell MB et al (1998) Class specific inhibition of house dust mite proteinases which cleave cell adhesion, induce cell death and which increase the permeability of lung epithelium. Br J Pharmacol 124:1048–1059.  https://doi.org/10.1038/sj.bjp.0701905 CrossRefGoogle Scholar
  42. Zaman MH, Kamm RD, Matsudaira P, Lauffenburger DA (2005) Computational model for cell migration in three-dimensional matrices. Biophys J 89:1389–1397.  https://doi.org/10.1529/biophysj.105.060723 CrossRefGoogle Scholar
  43. Zhang B, Radisic M (2017) Organ-on-A-chip devices advance to market. Lab Chip 17:2395–2420.  https://doi.org/10.1039/c6lc01554a CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Timothy S. Frost
    • 1
    Email author
  • Victor Estrada
    • 2
  • Linan Jiang
    • 2
  • Yitshak Zohar
    • 1
    • 2
  1. 1.Department Biomedical EngineeringUniversity of ArizonaTucsonUSA
  2. 2.Department Aerospace and Mechanical EngineeringUniversity of ArizonaTucsonUSA

Personalised recommendations