Microfluidics and Nanofluidics

, 23:109 | Cite as

Does PDMS really interact with [18F]fluoride? Applications in microfluidic reactors for 18F-radiopharmaceuticals

  • Laura Fernandez-MazaEmail author
  • Blas Salvador
  • Diana Orta
  • Ariadna Corral
  • Antonio Luque
Research Paper


Microfluidic devices used to synthesize radiopharmaceuticals for positron emission tomography (PET) are of increasing interest for the rapid preparation of on-demand doses, especially in medical centers that do not have a cyclotron. Polydimethylsiloxane (PDMS) is an inexpensive, easily available material used for the manufacturing of microfluidic devices. The literature often refers the interaction of this material with [18F]fluoride. Many authors discard PDMS as a suitable material because of these interactions, while others suggest the use of a thin fluoropolymer coating to reduce the adsorption of [18F]fluoride. The objective of this work was to evaluate the retention of [18F]fluoride within a PDMS reaction chamber without further treatment, under heating and vacuum in a range of activities that would allow to obtain enough product for two or three human doses of a radiopharmaceutical. Under these conditions, which are commonly used in radiosynthesis with [18F]fluoride, we found that [18F]fluoride was almost non-adsorbed into PDMS, making PDMS suitable for 18-F radiochemistry on single-use lab-on-chip devices, even uncoated.


Radiopharmaceuticals Lab on chip PDMS Microfluidics Fluorine-18 



The authors would like to acknowledge the support of Andalusian Government, project TIC 2296 “Microlab-en-chip para produccion de radiofarmacos para diagnostico PET”. Proyectos de Excelencia Junta de Andalucia, 2014, and the support of Siemens Healthineers and Curium Pharma.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Aerts J, Ballinger JR, Behe M, Decristoforo C, Elsinga P, Faivre-Chauvet A, Mindt TL, Peitl PK, Todde SC, Koziorowski J (2014) Guidance on current good radiopharmacy practice for the small scale preparation of radiopharmaceuticals using automated modules: a European perspective. J Label Compd Radiopharm 57:615–620CrossRefGoogle Scholar
  2. Arima V, Pascali G, Lade O, Kretschmer HR, Bernsdorf I, Hammond V, Watts P, De Leonardis F, Tarn MD, Pamme N, Cvetkovik BZ, Dittrich PS, Vasovic N, Duane R, Jaksic A, Zacheo A, Zizzari A, Marra A, Perrone E, Salvadori PA, Rinaldi R (2013) Radiochemistry on chip: towards dose-on-demand synthesis of PET radiopharmaceuticals. Lab Chip 13:2328–2336CrossRefGoogle Scholar
  3. Chen S, Javed MR, Kim H, Lei J, Lazari M, Shah GJ, Van Dam RM, Keng P (2014) Radiolabelling diverse positron emission tomography (PET) tracers using a single digital microfluidic reactor chip. Lab Chip 14:902–910CrossRefGoogle Scholar
  4. Decristoforo C, Patt M (2016) Are we preparing radiopharmaceuticals? EJNMMI Radiopharm Chem 1:12CrossRefGoogle Scholar
  5. Elizarov AM (2009) Microreactors for radiopharmaceuticals synthesis. Lab Chip 9:1326–1333CrossRefGoogle Scholar
  6. Elizarov AM, Dam Van, Shin YS, Kolb HC, Padget HC, Stout D, Shou J, Huang J, Daridon A, Heath JR (2010) Design and optimization of coin-shaped microreactor chips for Pet radiopharmaceuticals synthesis. J Nucl Med 51:282–287CrossRefGoogle Scholar
  7. Elsinga P, Todde S, Penuelas I, Meyer G, Farstad B, Falvre-Chauvet A, Mikolajczak R, Westera G, Gmeiner-Stopar T, Decristoforo C (2010) Guidance on current good radiopharmacy practice (cGRPP) for the small-scale preparation of radiopharmaceuticals. Eur J Nucl Med Mol Imaging 37:1049–1062CrossRefGoogle Scholar
  8. European Medicines Agency (2008) Eudralex. The rules Governing Medicinal Products in the European Union. Annex 3. Manufacture of RadiopharmaceuticalsGoogle Scholar
  9. Fu Y, Zhou H, Jia C, Jing F, Jin F, Li Q, Zhao J (2017) A microfluidic chip based on surfactant-doped polydimethylsiloxane (PDMS) in a sandwich configuration for low-cost and robust digital PCR. Sens Actuators B Chem 245:414–422CrossRefGoogle Scholar
  10. Gillies JM, Prenant C, Chimon GN, Smethurst GJ, Perrie W, Hamblett I, Dekker B, Zweit J (2006) Microfluidic reactor for the radiosynthesis of PET radiotracers. Appl Radiat Isot 64:325–332CrossRefGoogle Scholar
  11. Huang Y, Catastraro P, Lee C, Quake SR (2007) Solvent resistant microfluidic DNA synthesizer. Lab Chip 7:24–26CrossRefGoogle Scholar
  12. Jo B, Van Lerberghe LM, Motsegood KM, Beebe DJ (2000) Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS). J Microelectromech Syst 9:76–81CrossRefGoogle Scholar
  13. Lee J, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75:6544–6554CrossRefGoogle Scholar
  14. Lu S, Giamis AM, Pike V (2009) Synthesis of [18F]fallypride in a micro-reactor: rapid optimization and multiple-production in small doses for micro-PET studies. Curr Radiopharm 2(1):nihpa81093CrossRefGoogle Scholar
  15. Makamba H, Kim JH, Lim K, Park N, Hahn JH (2003) Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis 24:3607–3619CrossRefGoogle Scholar
  16. Mata A, Fleischman AJ, Roy S (2005) Characterization of Polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed Microdevices 7(4):281–293CrossRefGoogle Scholar
  17. Matesic L, Kalline A, Greguric I, Pascali G (2017) Dose-on-demand production of diverse 18F-radiotracers for preclinical applications using a continuous flow microfluidic system. Nucl Med Biol 52:24–31CrossRefGoogle Scholar
  18. Mehta G, Kiel MJ, Lee JW, Kotov N, Linderman JJ, Takayama S (2007) Polyelectrolyte-clay-protein layer films on microfluidic PDMS bioreactor surfaces for primary murine bone marrow culture. Adv Funct Mater 17:2701–2709CrossRefGoogle Scholar
  19. Pascali G, Mazzone G, Saccomanni G, Manera C, Salvadori PA (2010) Microfluidic approach for fast labeling optimization and dose-on-demand implementation. Nucl Med Biol 37:547–555CrossRefGoogle Scholar
  20. Pascali G, Nanavecchia G, Pitzianti S, Salvadori PA (2011) Dose-on-demand of diverse 18F-fluorocholine derivatives through a two-step microfluidic approach. Nucl Med Biol 38:637–644CrossRefGoogle Scholar
  21. Pascali G, Watts P, Salvadori PA (2013) Microfluidics in radiopharmaceutical chemistry. Nucl Med Biol 40:776–787CrossRefGoogle Scholar
  22. Pharmaceutical Inspection Co-operation Scheme (PIC/s) (2019) Document PE 010-4Google Scholar
  23. Rensch C, Jakson A, Lindner A, Salvamoser R, Samper V, Riese S, Bartenstein P, Wangler C, Wangler B (2013) Microfluidic: a groundbreaking technology for PET tracer production. Molecules 18:7930–7956CrossRefGoogle Scholar
  24. Rensch C, Lindner S, Salvamoser R, Leidner S, Böld C, Samper V, Taylor D, Baller M, Riese S, Bartenstein P, Wängler C, Wängler B (2014) A solvent resistant lab-on-chip platform for radiochemistry applications. Lab Chip 14:2556–2564CrossRefGoogle Scholar
  25. Saha GB (2018) Fundamentals of Nuclear Pharmacy, 7th edn. Springer, BaselCrossRefGoogle Scholar
  26. Tarn MD, Pamme N (2011) Microfluidic platforms for performing surface-based clinical assays. Expert Rev Mol Diagn 11:711–720CrossRefGoogle Scholar
  27. Toepke MW, Beebe DJ (2006) PDMS absorption pf small molecules and consequences in microfluidic applications. Lab Chip 6:1484–1486CrossRefGoogle Scholar
  28. Van Dam R, Elizarov AM, Ball CE, Kolb HC (2008) International patent WO2008/091694Google Scholar
  29. Van Poll ML, Zhou F, Ramstedt M, Hu L, Huck W (2007) A self-assembly approach to chemical micropattering of Poly(dimethylsiloxane). Angew Chem 119(35):6754–6757CrossRefGoogle Scholar
  30. Wang M, Lin W, Liu K, Masterman-Smith M, Shen CK (2010) Microfluidics for positron emission tomography (PET) imaging probe development. Mol Imaging 9(4):175–191CrossRefGoogle Scholar
  31. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
  32. Zacheo A, Arima V, Pascali G, Salvadori PA, Zizzari A, Perrone E, De Marco L, Gigli G, Rinaldi R (2011) Radioactive resistance evaluation of polymeric materials for application in radiopharmaceuticals. Microfluid Nanofluid 11:35–44CrossRefGoogle Scholar
  33. Zeng D, Desai AV, Ranganathan D, Wheeler TD, Kenis PJA, Reichert DE (2013) Microfluidic radiolabeling of biomolecules with PET radiometals. Nucl Med Biol 40:42–51CrossRefGoogle Scholar
  34. Zhang X, Liu F, Knapp K, Nickels ML, Manning HC, Bellan LM (2018) A simple microfluidic platform for rapid and efficient production of the radiotracer [18F]fallypride. Lab Chip 18:1369–1377CrossRefGoogle Scholar
  35. Zhou J, Ellis AV, Voelcker NH (2010) Recent developmets in PDMS surface modification for microfluidic devices. Electrophoresis 31:2–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro Nacional de AceleradoresUniversidad de Sevilla, CSIC and Junta de AndaluciaSevilleSpain
  2. 2.Departamento de Ingenieria Electronica, Escuela Tecnica Superior de IngenieriaUniversidad de SevillaSevilleSpain

Personalised recommendations