Advertisement

Microfluidics and Nanofluidics

, 23:108 | Cite as

Viscoelastic propulsion of a rotating dumbbell

  • J. Amadeus Puente-Velázquez
  • Francisco A. Godínez
  • Eric Lauga
  • Roberto ZenitEmail author
Research Paper
Part of the following topical collections:
  1. Particle motion in non-Newtonian microfluidics

Abstract

Viscoelastic fluids impact the locomotion of swimming microorganisms and can be harnessed to devise new types of self-propelling devices. Here we report on experiments demonstrating the use of normal stress differences for propulsion. Rigid dumbbells are rotated by an external magnetic field along their axis of symmetry in a Boger fluid. When the dumbbell is asymmetric (snowman geometry), non-Newtonian normal stress differences lead to net propulsion in the direction of the smaller sphere. The use of a simple model allows to rationalise the experimental results and to predict the dependence of the snowman swimming speed on the size ratio between the two spheres.

Keywords

Viscoelasticity Non-Newtonian Particle motion Low-Re locomotion 

Notes

References

  1. Berg HC, Turner L (1979) Movement of microorganisms in viscous environments. Nature 278:349–351CrossRefGoogle Scholar
  2. Bird RB (1976) Useful non-Newtonian models. Annu Rev Fluid Mech 8:13–34CrossRefGoogle Scholar
  3. Bird RB, Wiest JM (1995) Constitutive equations for polymeric liquids. Annu Rev Fluid Mech 27:169–193MathSciNetCrossRefGoogle Scholar
  4. Bird RB, Curtiss CF, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Kinetic theory, vol 2, 2nd edn. Wiley-Interscience, New YorkGoogle Scholar
  5. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Fluid mechanics, vol 1, 2nd edn. Wiley-Interscience, New YorkGoogle Scholar
  6. Boger DV (1977) A highly elastic constant-viscosity fluid. J Non-Newtonian Fluid Mech 3:87–91CrossRefGoogle Scholar
  7. De Corato M, Greco F, Maffettone PL (2015) Locomotion of a microorganism in weakly viscoelastic liquids. Phys Rev E 92:053008MathSciNetCrossRefGoogle Scholar
  8. Del Guidice F, D’Avino G, Greco F, Netti PA, Maffettone PL (2015) Effect of fluid rheology on particle migration in a square-shaped microchannel. Microfluid Nanofluid 19:95–104CrossRefGoogle Scholar
  9. Doi M, Edwards SF (1988) The theory of polymer dynamics. Oxford University Press, OxfordGoogle Scholar
  10. Espinosa-Garcia J, Lauga E, Zenit R (2013) Elasticity increases locomotion of flexible swimmers. Phys Fluids 25:031701CrossRefGoogle Scholar
  11. Fu HC, Wolgemuth CW, Powers TR (2008) Beating patterns of filaments in viscoelastic fluids. Phys Rev E 78:041913-1–041913-12MathSciNetGoogle Scholar
  12. Fu HC, Wolgemuth CW, Powers TR (2009) Swimming speeds of filaments in nonlinearly viscoelastic fluids. Phys Fluids 21:033102CrossRefGoogle Scholar
  13. Fulford GR, Katz DF, Powell RL (1998) Swimming of spermatozoa in a linear viscoelastic fluid. Biorheology 35:295–309CrossRefGoogle Scholar
  14. Gaffney EA, Gadelha H, Smith DJ, Blake JR, Kirkman-Brown JC (2011) Mammalian sperm motility: observation and theory. Annu Rev Fluid Mech 43:501–528MathSciNetCrossRefGoogle Scholar
  15. Gagnon DA, Shen XN, Arratia PE (2013) Undulatory swimming in fluids with polymer networks. Europhys Lett 104:14004CrossRefGoogle Scholar
  16. Gast AP, Russel WB (1998) Simple ordering in complex fluids. Physics Today 51:24–31CrossRefGoogle Scholar
  17. Godinez F, Chavez O, Zenit R (2012) Design of a novel rotating magnetic field device. Rev Sci Inst 83:066109CrossRefGoogle Scholar
  18. Godinez FA, Koens L, Montenegro-Johnson TD, Zenit R, Lauga E (2015) Complex fluids affect low-Reynolds number locomotion in a kinematic-dependent manner. Exp Fluids 56:97CrossRefGoogle Scholar
  19. Hatwalne Y, Ramaswamy S, Rao M, Simha RA (2004) Rheology of active-particle suspensions. Phys Rev Lett 92:118101CrossRefGoogle Scholar
  20. Ishijima S, Oshio S, Mohri H (1986) Flagellar movement of human spermatozoa. Gamete Res 13:185–197CrossRefGoogle Scholar
  21. Katz DF, Berger SA (1980) Flagellar propulsion of human sperm in cervical mucus. Biorheology 17:169–175CrossRefGoogle Scholar
  22. Keim NC, Garcia M, Arratia PE (2012) Fluid elasticity can enable propulsion at low Reynolds number. Phys Fluids 24:081703CrossRefGoogle Scholar
  23. Larson RG (1988) Constitutive equations for polymer melts and solutions. Butterworth-Heinemann, BostonGoogle Scholar
  24. Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, OxfordGoogle Scholar
  25. Lauga E (2007) Propulsion in a viscoelastic fluid. Phys Fluids 19:083104CrossRefGoogle Scholar
  26. Lauga E (2014) Locomotion in complex fluids: integral theorems. Phys Fluids 26:081902CrossRefGoogle Scholar
  27. Leshansky AM (2009) Enhanced low-Reynolds-number propulsion in heterogeneous viscous environments. Phys Rev E 80:051911CrossRefGoogle Scholar
  28. Liu B, Powers TR, Breuer KS (2011) Force-free swimming of a model helical flagellum in viscoelastic fluids. Proc Natl Acad Sci USA 108:19516–19520CrossRefGoogle Scholar
  29. Magariyama Y, Kudo S (2002) A mathematical explanation of an increase in bacterial swimming speed with viscosity in linear-polymer solutions. Biophys J 83:733–739CrossRefGoogle Scholar
  30. Man Y, Lauga E (2015) Phase-separation models for swimming enhancement in complex fluids. Phys Rev E 92:023004MathSciNetCrossRefGoogle Scholar
  31. Martinez VA, Schwarz-Linek J, Reufer M, Wilson LG, Morozov AN, Poon WCK (2014) Flagellated bacterial motility in polymer solutions. Proc Natl Acad Sci USA 111:17771–17776CrossRefGoogle Scholar
  32. Morrison FA (2001) Understanding rheology. Oxford University Press, OxfordzbMATHGoogle Scholar
  33. Mussler M, Rafai S, Peyla P, Wagner C (2013) Effective viscosity of non-gravitactic Chlamydomonas reinhardtii microswimmer suspensions. Europhys Lett 101:54004CrossRefGoogle Scholar
  34. Normand T, Lauga E (2008) Flapping motion and force generation in a viscoelastic fluid. Phys Rev E 78:061907CrossRefGoogle Scholar
  35. Oldroyd JG (1950) On the formulation of rheological equations of state. Proc R Soc A 200:523–541MathSciNetCrossRefGoogle Scholar
  36. Pak OS, Normand T, Lauga E (2010) Pumping by flapping in a viscoelastic fluid. Phys Rev E 81:036312CrossRefGoogle Scholar
  37. Pak OS, Zhu L, Brandt L, Lauga E (2012) Micropropulsion and microrheology in complex fluids via symmetry breaking. Phys Fluids 24:103102CrossRefGoogle Scholar
  38. Patteson AE, Gopinath A, Goulian M, Arratia PE (2015) Running and tumbling with E. coli in polymeric solutions. Sci Rep 5:15761CrossRefGoogle Scholar
  39. Prost J (1995) The physics of liquid crystals. Oxford University Press, OxfordGoogle Scholar
  40. Qin B, Gopinath A, Yang J, Gollub JP, Arratia PE (2015) Flagellar kinematics and swimming of algal cells in viscoelastic fluids. Sci Rep 5:9190CrossRefGoogle Scholar
  41. Qiu T, Lee T-C, Mark AG, Morozov KI, Münster R, Mierka O, Turek S, Leshansky AM, Fischer P (2014) Swimming by reciprocal motion at low Reynolds number. Nat Commun 5:5119CrossRefGoogle Scholar
  42. Rafai S, Jibuti L, Peyla P (2010) Effective viscosity of microswimmer suspensions. Phys Rev Lett 104:098102CrossRefGoogle Scholar
  43. Riley EE, Lauga E (2014) Enhanced active swimming in viscoelastic fluids. Europhys Lett 108:34003CrossRefGoogle Scholar
  44. Rogowski LW, Kim H, Zhang X, Junkim M (2018) Microsnowman propagation and robotics inside synthetic mucus. In: 15th international conference on Ubiquitous Robo, Honolulu, HI, USA, June 2018. IEEEGoogle Scholar
  45. Ryan SD, Haines BM, Berlyand L, Ziebert F, Aranson IS (2011) Viscosity of bacterial suspensions: hydrodynamic interactions and self-induced noise. Phys Rev E 83:050904CrossRefGoogle Scholar
  46. Saintillan D (2018) Rheology of active fluids. Annu Rev Fluid Mech 50:563–592MathSciNetCrossRefGoogle Scholar
  47. Schamel D, Mark AG, Gibbs JG, Miksch C, Morozov KI, Leshansky AM, Fischer P (2014) Nanopropellers and their actuation in complex viscoelastic media. ACS Nano 8:8794–8801CrossRefGoogle Scholar
  48. Shen XN, Arratia PE (2011) Undulatory swimming in viscoelastic fluids. Phys Rev Lett 106:208101CrossRefGoogle Scholar
  49. Sokolov A, Aranson IS (2009) Reduction of viscosity in suspension of swimming bacteria. Phys Rev Lett 103:148101CrossRefGoogle Scholar
  50. Spagnolie SE (ed) (2015) Complex fluids in biological systems. Springer, BerlinzbMATHGoogle Scholar
  51. Spagnolie SE, Liu B, Powers TR (2013) Locomotion of helical bodies in viscoelastic fluids: enhanced swimming at large helical amplitudes. Phys Rev Lett 111:068101CrossRefGoogle Scholar
  52. Tanner RI (1988) Engineering rheology, 2nd edn. Clarendon Press, OxfordzbMATHGoogle Scholar
  53. Teran J, Fauci L, Shelley M (2010) Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys Rev Lett 104:038101CrossRefGoogle Scholar
  54. Thomases B, Guy RD (2014) Mechanisms of elastic enhancement and hindrance for finite-length undulatory swimmers in viscoelastic fluids. Phys Rev Lett 113:098102CrossRefGoogle Scholar
  55. Trofa M, Vocciante M, D’Avino G, Hulsen MA, Greco F, Maffettone PL (2015) Numerical simulations of the competition between the effects of inertia and viscoelasticity on particle migration in poiseuille flow. Comput Fluids 107:214–223MathSciNetCrossRefGoogle Scholar
  56. Tung C-K, Lin C, Harvey B, Fiore AG, Ardon F, Wu M, Suarez SS (2017) Fluid viscoelasticity promotes collective swimming of sperm. Sci Rep 7:3152CrossRefGoogle Scholar
  57. Vélez-Cordero JR, Lauga E (2013) Waving transport and propulsion in a generalized newtonian fluid. J Non-Newtonian Fluid Mech 199:37–50CrossRefGoogle Scholar
  58. Zhu L, Do-Quang M, Lauga E, Brandt L (2011) Locomotion of a microorganism in weakly viscoelastic liquids. Phys Rev E 83:011901CrossRefGoogle Scholar
  59. Zhu L, Lauga E, Brandt L (2012) Self-propulsion in viscoelastic fluids: pushers vs. pullers. Phys Fluids 25:051902CrossRefGoogle Scholar
  60. Zöttl A, Yeomans JM (2017) Enhanced bacterial swimming speeds in macromolecular polymer solutions. arXiv preprint. arXiv:1710.03505Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Instituto de IngenieríaUniversidad Nacional Autónoma de México, UNAM, C.U.Mexico CityMexico
  3. 3.Polo Universitario de Tecnología AvanzadaUniversidad Nacional Autónoma de MéxicoApodacaMexico
  4. 4.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK

Personalised recommendations