Advertisement

Dynamic particle ordering in oscillatory inertial microfluidics

  • Claudius DietscheEmail author
  • Baris R. Mutlu
  • Jon F. Edd
  • Petros Koumoutsakos
  • Mehmet Toner
Research Paper
  • 214 Downloads
Part of the following topical collections:
  1. Particle motion in non-Newtonian microfluidics

Abstract

Particles suspended in conduit flows at small and intermediate Reynolds numbers cluster on specific focal positions while also forming particle pairs and trains due to flow-mediated interactions. The recent introduction of oscillatory inertial microfluidics has enabled the creation of virtually infinite channels, allowing the manipulation of particles at extremely low particle Reynolds numbers (Rep ≪ 1). Here, we investigate experimentally the dynamics of formation, the robustness and the stability of particle pairs, and the precision of the inter-particle distance in an oscillatory flow field, in microchannels with a rectangular cross section. Our results indicate that the cross-sectional arrangement of the particles is fundamental in determining the characteristics of the resulting particle pair.

Keywords

Microfluidics Oscillatory flow Inertial focusing Train of particles Hydrodynamic self-assembly 

Notes

Acknowledgements

This work was partially supported by National Institute of Biomedical Imaging and Bioengineering BioMEMS Resource Center Grant P41 EB002503.

References

  1. Butler JE, Majors PD, Bonnecaze RT (1999) Observations of shear-induced particle migration for oscillatory flow of a suspension within a tube. Phys Fluids 11:2865–2877.  https://doi.org/10.1063/1.870145 CrossRefzbMATHGoogle Scholar
  2. D’Avino G, Romeo G, Villone MM et al (2012) Single line particle focusing induced by viscoelasticity of the suspending liquid: theory, experiments and simulations to design a micropipe flow-focuser. Lab Chip 12:1638–1645.  https://doi.org/10.1039/c2lc21154h CrossRefGoogle Scholar
  3. Del Giudice F, D’Avino G, Greco F et al (2018) Fluid viscoelasticity drives self-assembly of particle trains in a straight microfluidic channel. Phys Rev Appl 10:1.  https://doi.org/10.1103/PhysRevApplied.10.064058 CrossRefGoogle Scholar
  4. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038–3046.  https://doi.org/10.1039/b912547g CrossRefGoogle Scholar
  5. Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci 104:18892–18897.  https://doi.org/10.1073/pnas.0704958104 CrossRefGoogle Scholar
  6. Di Carlo D, Edd JF, Humphry KJ et al (2009) Particle segregation and dynamics in confined flows. Phys Rev Lett 102:1–4.  https://doi.org/10.1103/PhysRevLett.102.094503 CrossRefGoogle Scholar
  7. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984.  https://doi.org/10.1021/ac980656z CrossRefGoogle Scholar
  8. Edd JF, Di Carlo D, Humphry KJ et al (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8:1262–1264.  https://doi.org/10.1039/b805456h CrossRefGoogle Scholar
  9. Fachin F, Spuhler P, Martel-Foley JM et al (2017) Monolithic chip for high-throughput blood cell depletion to sort rare circulating tumor cells. Sci Rep 7:1–11.  https://doi.org/10.1038/s41598-017-11119-x CrossRefGoogle Scholar
  10. Gao Y, Magaud P, Baldas L et al (2017) Self-ordered particle trains in inertial microchannel flows. Microfluid Nanofluid 21:154.  https://doi.org/10.1007/s10404-017-1993-5 CrossRefGoogle Scholar
  11. Gupta A, Magaud P, Lafforgue C, Abbas M (2018) Conditional stability of particle alignment in finite-Reynolds-number channel flow. Phys Rev Fluids 3:1–19.  https://doi.org/10.1103/PhysRevFluids.3.114302 CrossRefGoogle Scholar
  12. Humphry KJ, Kulkarni PM, Weitz DA et al (2010) Axial and lateral particle ordering in finite Reynolds number channel flows. Phys Fluids 22:81703CrossRefGoogle Scholar
  13. Hur SC, Tse HTK, Di Carlo D (2010) Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip 10:274–280.  https://doi.org/10.1039/b919495a CrossRefGoogle Scholar
  14. Kahkeshani S, Haddadi H, Di Carlo D (2015) Preferred interparticle spacings in trains of particles in inertial microchannel flows. J Fluid Mech 786:R3.  https://doi.org/10.1017/jfm.2015.678 CrossRefGoogle Scholar
  15. Kang K, Lee SS, Hyun K et al (2013) DNA-based highly tunable particle focuser. Nat Commun 4:1–8.  https://doi.org/10.1038/ncomms3567 CrossRefGoogle Scholar
  16. Kim JA, Lee JR, Je TJ et al (2018) Size-dependent inertial focusing position shift and particle separations in triangular microchannels. Anal Chem 90:1827–1835.  https://doi.org/10.1021/acs.analchem.7b03851 CrossRefGoogle Scholar
  17. Lagus TP, Edd JF (2012) High throughput single-cell and multiple-cell micro-encapsulation. J Vis Exp 64:e4096.  https://doi.org/10.3791/4096 CrossRefGoogle Scholar
  18. Lagus TP, Edd JF (2013a) High-throughput co-encapsulation of self-ordered cell trains: cell pair interactions in microdroplets. RSC Adv 3:20512–20522.  https://doi.org/10.1039/c3ra43624a CrossRefGoogle Scholar
  19. Lagus TP, Edd JF (2013b) High-throughput co-encapsulation of self-ordered cell trains: cell pair interactions in microdroplets. RSC Adv 3:20512–20522.  https://doi.org/10.1039/c3ra43624a CrossRefGoogle Scholar
  20. Lee W, Amini H, Stone HA, Di Carlo D (2010) Dynamic self-assembly and control of microfluidic particle crystals. Proc Natl Acad Sci 107:22413–22418.  https://doi.org/10.1073/pnas.1010297107 CrossRefGoogle Scholar
  21. Lim EJ, Ober TJ, Edd JF et al (2014) Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nat Commun 5:1–9.  https://doi.org/10.1038/ncomms5120 CrossRefGoogle Scholar
  22. Loudon C, Tordesillas A (1998) The use of the dimensionless Womersley number to characterize the unsteady nature of internal flow. J Theor Biol 191:63–78.  https://doi.org/10.1006/jtbi.1997.0564 CrossRefGoogle Scholar
  23. Martel JM, Toner M (2014) Inertial focusing in microfluidics. Annu Rev Biomed Eng 16:371–396.  https://doi.org/10.1146/annurev-bioeng-121813-120704 CrossRefGoogle Scholar
  24. Matas JP, Glezer V, Guazzelli É, Morris JF (2004) Trains of particles in finite-Reynolds-number pipe flow. Phys Fluids 16:4192–4195.  https://doi.org/10.1063/1.1791460 CrossRefzbMATHGoogle Scholar
  25. Mikulencak DR, Morris JF (2004) Stationary shear flow around fixed and free bodies at finite Reynolds number. J Fluid Mech 520:215–242MathSciNetCrossRefGoogle Scholar
  26. Moon HS, Je K, Min JW et al (2018) Inertial-ordering-assisted droplet microfluidics for high-throughput single-cell RNA-sequencing. Lab Chip 18:775–784.  https://doi.org/10.1039/c7lc01284e CrossRefGoogle Scholar
  27. Morris JF (2001) Anomalous migration in simulated oscillatory pressure-driven flow of a concentrated suspension. Phys Fluids 13:2457–2462.  https://doi.org/10.1063/1.1390363 CrossRefzbMATHGoogle Scholar
  28. Mukherjee P, Wang X, Zhou J, Papautsky I (2019) Single stream inertial focusing in low aspect-ratio triangular microchannels. Lab Chip 19:147–157.  https://doi.org/10.1039/c8lc00973b CrossRefGoogle Scholar
  29. Mutlu BR, Edd JF, Toner M (2018) Oscillatory inertial focusing in infinite microchannels. Proc Natl Acad Sci 115:7682–7687.  https://doi.org/10.1073/pnas.1721420115 CrossRefGoogle Scholar
  30. Ozkumur E, Shah AM, Ciciliano JC et al (2013) Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med 5:179ra47.  https://doi.org/10.1126/scitranslmed.3005616 CrossRefGoogle Scholar
  31. Pan Z, Zhang R, Yuan C, Wu H (2018) Direct measurement of microscale flow structures induced by inertial focusing of single particle and particle trains in a confined microchannel. Phys Fluids.  https://doi.org/10.1063/1.5048478 CrossRefGoogle Scholar
  32. Reece AE, Oakeya J (2016) Long-range forces affecting equilibrium inertial focusing behavior in straight high aspect ratio microfluidic channels. Phys Fluids 28:043303.  https://doi.org/10.1063/1.4946829 CrossRefGoogle Scholar
  33. Segré G, Silberberg A (1961) Radial particle displacements in poiseuille flow of suspensions. Nature 189:209–210.  https://doi.org/10.1038/189209a0 CrossRefGoogle Scholar
  34. Shen S, Ma C, Zhao L et al (2014) High-throughput rare cell separation from blood samples using steric hindrance and inertial microfluidics. Lab Chip 14:2525–2538.  https://doi.org/10.1039/c3lc51384j CrossRefGoogle Scholar
  35. Syed MS, Rafeie M, Vandamme D et al (2017) Selective separation of microalgae cells using inertial microfluidics. Bioresour Technol 252:91–99.  https://doi.org/10.1016/j.biortech.2017.12.065 CrossRefGoogle Scholar
  36. Yang S, Kim JY, Lee SJ et al (2011) Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab Chip 11:266–273.  https://doi.org/10.1039/c0lc00102c CrossRefGoogle Scholar
  37. Yuan C, Pan Z, Wu H (2018) Inertial migration of single particle in a square microchannel over wide ranges of Re and particle sizes. Microfluid Nanofluidics 22:1–13.  https://doi.org/10.1007/s10404-018-2120-y CrossRefGoogle Scholar
  38. Zurita-Gotor M, Blawzdziewicz J, Wajnryb E (2007) Swapping trajectories: a new wall-induced cross-streamline particle migration mechanism in a dilute suspension of spheres. J Fluid Mech 592:447–469.  https://doi.org/10.1017/S0022112007008701 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.BioMEMS Resource Center, Center for Engineering in Medicine and Surgical ServicesMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Computational Science and Engineering LaboratoryETH ZürichZurichSwitzerland
  3. 3.Massachusetts General Hospital Cancer Center, Harvard Medical SchoolBostonUSA
  4. 4.Shriners Hospitals for ChildrenBostonUSA

Personalised recommendations